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Definitions

Let Y be a oriented closed 3-manifold. Y is a rational homology
3-sphere(QHS3) if H∗(Y ,Q) ∼= H∗(S

3,Q).
e.g. lens space L(p, q), Brieskorn sphere Σ(p, q, r).

Let X be an oriented connected compact 4-manifold (possibly with
boundary). The intersection form of X is an integral symmetric
bilinear form

QX : H2(X ;Z)/Tors × H2(X ;Z)/Tors → Z

given by Lefschetz duality and cup product.
e.g. S4, S2 × S2, CP2.
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Main question

Question

For a given rational homology 3-sphere Y , which nondegenerate definite
bilinear forms are realized as the intersection form of a smooth 4-manifold
bounded by Y ?
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Related results

(S. Donaldson, 1982) Any simply connected closed smooth definite
4-manifold has diagonalizable intersection form.

(K. Frøyshov, Ph.D thesis) A negative definite simply connected
smooth 4-manifold bounded by the Poincaré homology sphere has
intersection form which is diagonalizable or equivalent to
−E8 ⊕ 〈−1〉m for some m.

(B. Owens and S. Strle, 2011) determined which Dehn surgery
3-manifolds along the torus knots bound a negative definite smooth
4-manifold.

(C. Scaduto, 2018) extended the results of Frøyshov for the
3-manifolds which are obtained by Dehn surgery along a knot with
4-ball genus 1 or 2.
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Integral lattices

An integral lattice Λ := (Zn,Q) is a free abelian group with nondegenerate
integral symmetric bilinear form Q on Zn. We say

Λ is even if Q(v , v) is even for any v ∈ Zn.

Λ is odd if Q(v , v) is odd for some v ∈ Zn.

Λ is definite if |sign(Q)| = n

Λ is unimodular if | det(Q)| = 1
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Definitions

We say that an integral lattice Λ is smoothly (topologically) bounded
by a 3-manifold Y if there is a smooth (topological) 4-manifold X
with boundary Y and (Zb2(X ),QX ) ∼= Λ.

Two negative definite lattices Λ1 and Λ2 are stable equivalent if
Λ1 ⊕ 〈−1〉n ∼= Λ2 ⊕ 〈−1〉m for some non-negative integers n and m.

Let I(Y )(ITOP(Y )) be the set of all negative definite lattices that
can be smoothly (topologically) bounded by Y , up to
stable-equivalence.

Is(Y ) is same as I(Y ) except additional simply connected condition
on the bounding 4-manifolds
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Examples

ITOP(Y ) = {all negative definite unimodular lattices}/ ∼ for an
ZHS3 Y (Freedman)

|ITOP(Y )| =∞ for a QHS3 Y (Boyer and Edmond)

I(S3) = {[〈−1〉]} (Donaldson)

Is(Σ(2, 3, 5)#(−Σ(2, 3, 5))) = ∅ (Taubes)

Is(Σ(2, 3, 5)) = {[〈−1〉], [−E8]}(Frøyshov and Scaduto)

2 ≤ |I(Σ(2, 3, 5))| ≤ 15(Frøyshov and Elkies)

K. Sato and M. Taniguchi gave interesting examples.

Question

For a given rational homology 3-sphere Y , is I(Y ) a finite set or not?
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Main theorem

Theorem (K. Park-C, 17)

Let Y1 and Y2 be rational homology 3-spheres. Suppose that there is a
negative definite cobordism from Y1 to Y2 and |I(Y2)| <∞. Then
|I(Y1)| <∞

From the theorem, we can obtain finiteness results for more general
rational homology 3-spheres.
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Main theorem

If we assign Y2 to S3, then we obtain following corollary.

Corollary

If a rational homology 3-sphere Y bounds a positive definite smooth
4-manifold, then there are only finitely many negative definite lattices, up
to stable-equivalence, which can be realized as the intersection form of a
smooth 4-manifold bounded by Y . In other words, if I(−Y ) 6= ∅, then
|I(Y )| <∞.
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δ-invariant of lattices

We call ξ ∈ Λ∗ a characteristic covector if ξ(w) ≡ Q(w ,w) (mod 2) for
any w ∈ Λ. We denote the set of characteristic covectors by Char(Λ).

Definition

Let Λ be a integral definite lattice.

δ(Λ) := max
ξ∈Char(Λ)

(
rk(Λ)− |ξ · ξ|

4

)
For example, if Λ ∼= 〈−1〉n, then δ(Λ) = 0. If Λ is even lattice, then
δ(Λ) = 1

4 (rank(Λ))
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δ-invariant of lattices

N. Elkies showed that the δ-invariant characterizes the standard definite
lattices.

Theorem (N. Elkies, ’95)

Let Λ be a negative definite unimodular lattice. Then δ(Λ) ≥ 0. Moreover
δ(Λ) = 0 if and only if Λ ∼= 〈−1〉n for some n.

Dong Heon CHOE (SNU) On intersection forms of definite 4-manifolds September 12, 2018 11 / 27



Correction term invariant

Ozsváth and Szabó introduced the rational valued invariant called
correction term invariant by using the TQFT properties of Heegaard Floer
homology.

It is denoted by d(Y , t) ∈ Q for spinc QHS (Y , t).

d(Y1#Y2, t1#t2) = d(Y1, t1) + d(Y2, t2)
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Correction term invariant

The correction term also gives a constraint on the intersection form of a
negative definite 4-manifold with a given boundary.

Theorem (Ozsváth-Szabó, ’03)

If X is a negative definite smooth 4-manifold bounded by Y , then for each
spinc structure s over X ,

c1(s)2 + b2(X ) ≤ 4d(Y , s|Y )
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Correction term invariant

Note that c1(s) is an integral lift of the second Stiefel-Whitney class.
Hence, it is a characteristic covector of the intersection lattice of X .

Corollary

Suppose that a negative definite lattice Λ is bounded by a rational
homology 3-sphere Y . Then

δ(Λ) ≤ max
t∈Spinc (Y )

d(Y , t)
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Correction term invariant

Combining with Elkies’s theorem, we obtain following immediate corollary.
We denote the lattice induced from a 4-manifold X by ΛX := (Zb2(X ),QX ).

Corollary

Let Y be a integral homology 3-sphere. Suppose that there is a negative
definite smooth 4-manifolds X with ∂X ∼= Y . Then d(Y ) ≥ 0 Moreover,
if d(Y ) = 0, then ΛX is diagonalizable.
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Main theorem

To prove the main theorem, we consider a set of lattices defined purely
algebraically in terms of the invariants of a given 3-manifolds.

Theorem

Let Γ1 and Γ2 be fixed negative definite lattices, and C > 0 and D ∈ Z be
constants. Define L(Γ1, Γ2;C ,D) to be the set of negative definite lattices
Λ, up to the stable-equivalence, satisfying the following conditions:

det(Λ) = D,

δ(Λ) ≤ C , and

Γ1 ⊕ Λ embeds into Γ2 ⊕ 〈−1〉N , N = rk(Γ1) + rk(Λ)− rk(Γ2).

Then L(Γ1, Γ2;C ,D) is finite.
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Proof of the theorem

For simplicity, we show a special case of the theorem in which Γ1 and Γ2

are trivial lattice.

Proposition

Let C > 0 and D ∈ Z be constants. There are finitely many negative
definite lattices Λ, up to the stable-equivalence, which satisfy the following
conditions:

det Λ = D,

δ(Λ) ≤ C, and

Λ is embedded into 〈−1〉rk(Λ) with a prime index.
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Proof of the theorem

We assume that Λ has no square −1 vector and p is odd prime. From the
third condition, we can write the basis vectors of Λ in term of the standard
basis of 〈−1〉rk(Λ)=n as follows.

B := {pe, e1 + s1e, . . . , en−1 + sn−1e}

where e, e1, · · · , en−1 be the standard basis of 〈−1〉n and p is the prime
index. we can also choose odd si such that −p + 1 < si < p− 1 for each i .
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Proof of the theorem

Hence, the matrix representation of Λ is following.

Q = −


p2 ps1 ps2 . . . psn−1

ps1 1 + s2
1 s1s2 . . . s1sn−1

ps2 s1s2 1 + s2
2

. . .
...

...
...

. . .
. . . sn−2sn−1

psn−1 s1sn−1 . . . sn−2sn−1 1 + s2
n−1

 .

Hence, a characteristic covector can be written as a vector

ξ = (k, k1, . . . , kn−1),

where k is an odd integer and ki ’s are even integers, in terms of the dual
basis of Q
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Proof of the theorem

From the matrix Q−1, we compute

|ξ · ξ| =
1

p2
(k2 +

n−1∑
i=1

(ksi − pki )
2).

Now, we use the following algebraic lemma to obtain a upper bound of
|ξ · ξ|.

Lemma

For an odd prime p and odd integers s1, s2, . . . , sn−1 in [−p + 1, p − 1],
there exists an odd integer k and even integers k1, k2, . . . , kn−1 such that

k2 +
n−1∑
i=1

(ksi − pki )
2 <

n + 2

3
p2.

Idea of proof : take average on k ∈ K := {−p + 2,−p + 4, . . . , p − 2}
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Proof of the theorem

Hence we obtain

min{|ξ · ξ| : ξ characteristic covector of Λ} ≤ n + 2

3
.

Therefore, from

δ(Λ) =
1

4
(n − min

ξ∈Char(Λ)
|ξ · ξ|) ≤ C ,

we conclude that
rk(Λ) = n ≤ 6C + 1.

It is known that there are only finitely many equivalence classes of lattices
for the given rank and determinant.
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Seifert 3-manifolds

A Seifert fibered rational homology 3-sphere can be represented by a
Seifert form

(e0; (a1, b1), . . . , (ak , bk)),

where e0, ai s are integers, bi s are positive integers and gcd(ai , bi ) = 1.

e0

−a1

b1 −a2

b2
−a3

b3

e0

−α1
1 −α1

2 −α1
3

−α2
1 −α2

2 −α2
3

−αl1
1 −αl2

1 −αl3
3

Figure: M(e0; (a1, b1), (a2, b2), (a3, b3)).
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Seifert 3-manifolds

Note that any Seifert fibered rational homology 3-sphere admits a
canonical Seifert form,

(e0; (a1, b1), (a2, b2), . . . , (ak , bk))

such that ai > bi > 0 for all 1 ≤ i ≤ k . We refer to the form as the
normal form of a Seifert fibered rational homology 3-sphere.

Proposition

Let Y be a Seifert fibered rational homology 3-sphere of the normal form

(e0; (a1, b2), . . . , (ak , bk)).

If e0 + k ≤ 0, then Y bounds both positive and negative definite smooth
4-manifolds, i.e., both I(Y ) and I(−Y ) are not empty.
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Spherical 3-manifolds

Proposition

Any spherical 3-manifolds except T1, O1, I1 and I7 can bound both
positive and negative definite smooth 4-manifolds. The manifolds T1, O1,
I1 and I7 cannot bound a positive definite smooth 4-manifold.

Hence, to prove the finiteness for all spherical 3-manifolds, we need to find
a negative definite cobordism from the exceptial cases to the known
3-manifold Y0 with |I(Y0)| <∞. Fortunately, by N. Elkies, it is known
that |I(Σ(2, 3, 5))| < 15. Note that the I1-type manifold homeomorphic to
Σ(2, 3, 5).
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Spherical 3-manifolds

−2

−2 −2 −2 −2 −2 −2 −2

O1

T1

−2 −1

−2 −2 −2 −2 −3 −2 −2

I7

Figure: The embedding of the plumbed 4-manifold corresponding to the

manifolds T1, O1 and I7 into −E8-manifold and −E8#CP2.
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Further Questions

By using topological obstruction, Donaldson obstruction and correction
term invariants, one can define L(Y ) as set of lattices satisfying all
conditions for a QHS3 Y .

finiteness property for more general 3-manifolds

L(Y ) = I(Y ) ?

I(Σ(2, 3, 5)) =?
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Thank you for your attention!
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