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Question

(X , ω): closed symplectic 4-manifold

1 Does X have an embedded closed connected
symplectic/Lagrangian surface L with some prescribed
condition?

For example, fixed homology class [L], fixed genus of L.

2 Stability problem: does L survive when ω is perturbed?

Today:
X = Xk = CP2#kCP2: rational 4-manifold
L: non-orientable Lagrangian surface within a fixed homology class
A ∈ H2(X ;Z2)
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Examples

cotangent bundle:
L: smooth surface
λcan: canonical 1-form
ωcan = −dλ: a symplectic form on the cotangent bundle T ∗L.
⇒ {zero section} ∼= L ⊂ T ∗L is a Lagrangian surface of T ∗L.

C2 with coordinates z1 = (x1, y1), z2 = (x2, y2)
ω0 = dx1 ∧ dy1 + dx2 ∧ dy2
TClifford = {|z1| = 1} × {|z2| = 1}: Clifford torus
⇒ TClifford is Lagrangian

CP2, with Fubini-Study form ωFS .
L ⊂ CP2: real part ⇒ L is Lagrangian, L ∼= RP2, [L] 6= 0
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Constraints

Theorem (Weinstein)

Let (X , ω) be a symplectic manifold and L ⊂ X a compact
Lagrangian submanifold. Then there exists a neighborhood
N(L) ⊂ T ∗L of the zero section, a neighborhood V ⊂ X of L, and
a diffeomorphism φ : N(L)→ V such that

φ∗ω = ωcan, φ|L = id .

L: orientable
[L] · [L] = −χ(L)

(Audin) L: nonorientable, P(A): Pontryagin square of A

P([L]) ≡ χ(L)(mod4)

For example, if L is non-orientable Lagrangian and [L] = 0,
then χ(L) ≡ 0(mod4), L ∼= 2RP2 = KB, 6RP2, 10RP2, · · · .
(Shevchishin) L ⊂ Xk : Lagrangian, [L] = 0⇒ L � KB.
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Main theorem

Theorem (Dai-H.-Li)

Let X be a rational 4-manifold and A ∈ H2(X ;Z2). Then A is
represented by an embedded non-orientable Lagrangian surface or
a sphere of Euler number χ for some symplectic structure if and
only if

P(A) ≡ χ (mod 4)

except A = 0, χ = 0.

Idea of proof:
find Lagrangian mRP2 with small m
+”Lagrangian” connected sum
+Lagrangian blowup
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Lagrangian connected sum

Lagrangian surgery (Polterovich):
Let L1, L2 ⊂ X be two Lagrangian surfaces intersecting
transversally at one point. Then there exists a Lagrangian
surface L′ given by smoothing the intersection point. In
particular, L′ ∼= L1#L2, [L

′] = [L1] + [L2].

Let L ⊂ X be an immersed Lagrangian surface with a
transversal self-intersection point. Then there exists an
embedded Lagrangian surface L′ given by smoothing the
intersection point. In particular, [L′] = [L] and L′ ∼= L#T 2 or
L′ ∼= L#KB.

Let L1, L2 ⊂ X be two disjoint Lagrangian surfaces. Then
there exists a Lagrangian surface L′ given by perturbing L2 to
create two intersection points and applying Lagrangian
surgery. L′ ∼= L1#L2#2RP2, [L′] = [L1] + [L2].
In particular, if L2 = T 2, [L2] = 0, then
L′ ∼= L1#4RP2, [L′] = [L].
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Symplectic/Lagrangian/relative blowup

Symplectic blowup:
Let B̃ = {(z , l) ∈ C2 × CP1 | z ∈ l}, B̃ε = {(z , l) ∈ B̃ | |z | ≤ ε},
and Br = {z ∈ C2 | |z | ≤ r}. There are two natural projections
p1 : B̃ → C2, and p2 : B̃ → CP1. p1 implies that B̃ is the blowup
of C2 at the origin.
For any λ > 0, let ωλ = p∗1ω0 + λ2p∗2ωFS be the induced
symplectic form on B̃.
There is a symplectomorphism

α : (B̃ε − CP1, ωλ) ∼= (B√λ2+ε2 − Bλ, ω0).

Let X be a symplectic 4-manifold, x ∈ U ⊂ X and δ >
√
λ2 + ε2,

φ : (U, ω)→ (Bδ, ω0) a symplectomorphism with φ(x) = 0. A
symplectic blowup of X at x is X ′ = (X − φ−1(Bλ) ∪ B̃ε/ ∼ where
a ∼ b ⇔ a = α(b) and a sympelctic form ω′ on X ′ is induced by ω
and ωλ.
Let p : X ′ → X the project map, E = PD(CP2) ∈ H2(X ′;Z).
Then [ω′] = [p∗ω] + πλ2E .
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Symplectic/Lagrangian/relative blowup

Lagrangian blowup:
(Rieser) L ⊂ X , x ∈ L. There exists a symplectic manifold (X̃ , ω̃),
a Lagrangian submanifold L̃ ⊂ X̃ , a smooth onto map p : X̃ → X
such that

p : p−1(X − x)→ X − x is a diffeomorphism.

p−1(x) ∼= CP1.

E = PD(p−1(x)), [ω̃] = [p∗ω] + πλ2E .

p(L̃) = L, L̃ ∼= L#RP2, [L̃] = p∗[L] + E (mod 2).

Relative blowup:
L ⊂ (X , ω): Lagrangian, x ∈ X − L. There exists a symplectic
blowup p : X ′ → X at x such that L′ = p−1(L) is Lagrangian and
L′ ∼= L, [L′] = p∗[L].
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Symplectic cone

Ω(X ) = {symplectic forms on X}
C (X ) = {[ω]|ω ∈ Ω(X )}: symplectic cone of X

K(X ) = {symplectic canonical classes}
CK (X ) = {[ω]|ω ∈ Ω(X ),Kω = K}
K ∈ K(X ), EK (X ) = {e ∈ H2(X ;Z)|PD(e) is represented by
a smoothly embedded (-1)-sphere, e · K = −1}.

Theorem (Li-Liu)

Let X be a closed oriented smooth 4-manifold and
b+(X ) = 1,C (X ) 6= ∅.

1 Any class in EK (X ) is represented by a ω-symplectic (-1)-sphere for
any ω ∈ CK (X ).

2 CK (X ) = {A ∈ FP|A · e > 0,∀e ∈ EK (X )}
3 |K(X )| <∞ and K(X ) is transitive under diffeomorphism.
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Symplectic cone

Let {H,E1, · · · ,Ek} be a standard basis of H2(Xk ;Z),
H2 = 1,H · Ei = 0,Ei , · · · ,Ej = −δij .
Assume the canonical class is K0 = −3H + E1 + · · ·+ Ek .
[ω] = aH −

∑
biEi ∈ CK (X )

⇔


a2 −

∑
b2i > 0

a > 0, bi > 0
e = pH −

∑
qiEi ∈ EK (X ), [ω] · e = ap −

∑
biqi > 0

Examples: Consider NC (X ) = {aH −
∑

biEi ∈ C (X )|a = 1}
In X2, E1,E2,H − E1 − E2 ∈ EK (X2)

b21 + b22 < 1
b1, b2 > 0
b1 + b2 < 1

In X3, E1,E2,E3,H − Ei − Ej ∈ EK (X2)
b21 + b22 + b23 < 1
b1, b2, b3 > 0
bi + bj < 1
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Relative symplectic cone

n ∈ N,A ∈ H2(X ;Z2),
Cn,A(X ) = {[ω]|ω ∈ Ω(X ), ∃L : nonorientable ω-Lagrangian
surface, [L] = A, L ∼= nRP2}.
Cn(X ) =

⋃
A

Cn,A(X )

(X , ω) has a Lagrangian nRP2 ⇔ [ω] ∈ Cn(X )

Lagrangian connected sum ⇒ Cn,A(X ) ⊂ Cn+4,A(X ).

Question:
1 What is Cn,A(X )? What is Cn(X )?
2 Cn,A(X ) = Cn+4,A(X )?

The structure of symplectic cone is related to the symplectic
packing problem.
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Symplectic packing

A symplectic packing of (X , ω) is a symplectic embedding

ϕ(c1, · · · , ck ) :
∐

B(

√
ci

π
, ω0)→ (X , ω)

Let Emb(X , ω) = {symplectic packing of (X , ω)}

Applying symplectic blowup,
ϕ(c1, · · · , ck) ∈ Emb(X , ω) =⇒ [p∗ω]−

∑
ciEi ∈ C (X#CP2)

(McDuff-Polterovich) X = Xk , k ≤ 8,
H −

∑
ciEi ∈ NCK0(X )⇒ ∃ϕ(c1, · · · , ck) ∈ Emb(CP2, ωFS ).

Let Z be a submanifold of (X , ω). A relative (symplectic)
packing of (X ,Z ) is a symplectic packing

ϕ(c1, · · · , ck) :
∐

B(

√
ci

π
, ω0)→ (X − Z , ω)

i.e. ϕ(c1, · · · , ck) ∈ Emb(X − Z , ω)
Similarly, a relative packing ϕ(c1, · · · , ck) ∈ Emb(X − Z , ω)
induces a symplectic structure in X#CP2. But we don’t know
if the converse is true.

12/15



Symplectic packing

A symplectic packing of (X , ω) is a symplectic embedding

ϕ(c1, · · · , ck ) :
∐

B(

√
ci

π
, ω0)→ (X , ω)

Let Emb(X , ω) = {symplectic packing of (X , ω)}
Applying symplectic blowup,
ϕ(c1, · · · , ck ) ∈ Emb(X , ω) =⇒ [p∗ω]−

∑
ciEi ∈ C (X#CP2)

(McDuff-Polterovich) X = Xk , k ≤ 8,
H −

∑
ciEi ∈ NCK0(X )⇒ ∃ϕ(c1, · · · , ck) ∈ Emb(CP2, ωFS ).

Let Z be a submanifold of (X , ω). A relative (symplectic)
packing of (X ,Z ) is a symplectic packing

ϕ(c1, · · · , ck) :
∐

B(

√
ci

π
, ω0)→ (X − Z , ω)

i.e. ϕ(c1, · · · , ck) ∈ Emb(X − Z , ω)
Similarly, a relative packing ϕ(c1, · · · , ck) ∈ Emb(X − Z , ω)
induces a symplectic structure in X#CP2. But we don’t know
if the converse is true.

12/15



Symplectic packing

A symplectic packing of (X , ω) is a symplectic embedding

ϕ(c1, · · · , ck ) :
∐

B(

√
ci

π
, ω0)→ (X , ω)

Let Emb(X , ω) = {symplectic packing of (X , ω)}
Applying symplectic blowup,
ϕ(c1, · · · , ck ) ∈ Emb(X , ω) =⇒ [p∗ω]−

∑
ciEi ∈ C (X#CP2)

(McDuff-Polterovich) X = Xk , k ≤ 8,
H −

∑
ciEi ∈ NCK0(X )⇒ ∃ϕ(c1, · · · , ck ) ∈ Emb(CP2, ωFS ).

Let Z be a submanifold of (X , ω). A relative (symplectic)
packing of (X ,Z ) is a symplectic packing

ϕ(c1, · · · , ck) :
∐

B(

√
ci

π
, ω0)→ (X − Z , ω)

i.e. ϕ(c1, · · · , ck) ∈ Emb(X − Z , ω)
Similarly, a relative packing ϕ(c1, · · · , ck) ∈ Emb(X − Z , ω)
induces a symplectic structure in X#CP2. But we don’t know
if the converse is true.

12/15



Symplectic packing

A symplectic packing of (X , ω) is a symplectic embedding

ϕ(c1, · · · , ck ) :
∐

B(

√
ci

π
, ω0)→ (X , ω)

Let Emb(X , ω) = {symplectic packing of (X , ω)}
Applying symplectic blowup,
ϕ(c1, · · · , ck ) ∈ Emb(X , ω) =⇒ [p∗ω]−

∑
ciEi ∈ C (X#CP2)

(McDuff-Polterovich) X = Xk , k ≤ 8,
H −

∑
ciEi ∈ NCK0(X )⇒ ∃ϕ(c1, · · · , ck ) ∈ Emb(CP2, ωFS ).

Let Z be a submanifold of (X , ω). A relative (symplectic)
packing of (X ,Z ) is a symplectic packing

ϕ(c1, · · · , ck ) :
∐

B(

√
ci

π
, ω0)→ (X − Z , ω)

i.e. ϕ(c1, · · · , ck ) ∈ Emb(X − Z , ω)
Similarly, a relative packing ϕ(c1, · · · , ck ) ∈ Emb(X − Z , ω)
induces a symplectic structure in X#CP2. But we don’t know
if the converse is true.

12/15



C1(Xk)

(Borman-Li-Wu) Symplectic packing for (CP2 − RP2, ωFS )
and (S2 × S2,Ω1, 1

2
) are equivalent.

Emb(CP2 − RP2, ωFS )←→ Emb(S2 × S2,Ω1, 1
2
)

Idea: Inflation, rational blowdown

We can view S2 × S2]kCP2 as X ′ = CP2](k + 1)CP2 with
standard basis H ′,E ′1, · · · ,E ′k+1.
ω = H − c1E1 − · · · ckEk ∈ C1,H(Xk) corresponds to a
symplectic form

ω′ = (
3

2
−c1)H ′−(1−c1)E ′1−(

1

2
−c1)E ′2−

k∑
i=2

ciE
′
i+1 ∈ C (Xk+1)

Use Cremona transformation, it is enough to understand
C1,H(Xk).
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Idea: Inflation, rational blowdown

We can view S2 × S2]kCP2 as X ′ = CP2](k + 1)CP2 with
standard basis H ′,E ′1, · · · ,E ′k+1.
ω = H − c1E1 − · · · ckEk ∈ C1,H(Xk ) corresponds to a
symplectic form

ω′ = (
3

2
−c1)H ′−(1−c1)E ′1−(

1

2
−c1)E ′2−

k∑
i=2

ciE
′
i+1 ∈ C (Xk+1)

Use Cremona transformation, it is enough to understand
C1,H(Xk ).
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C1(Xk)

Observations:

C1,H(Xk ) can be embedded to C (Xk+1) as a hyper surface.

C1,H(Xk ) ⊂ C (Xk ) is bounded by some hyperplane with
symmetric coefficients.

NC1,H(Xk ) is a polyhedron when k ≤ 8.

Questions:

Is C1,H(Xk) a polyhedron?

Can C1,H(X8) be determined by finite many hyperplanes in
C (X9)?

More symmetric structures on C1,H(Xk), C1(Xk ).
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Thank you
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