Non-orientable Lagrangian surfaces in rational 4-manifolds and symplectic packing problems

Chung-I Ho

National Kaohsiung Normal University

September 15, 2018

 (X,ω) : closed symplectic 4-manifold

• Does X have an embedded closed connected symplectic/Lagrangian surface L with some prescribed condition?

 (X,ω) : closed symplectic 4-manifold

• Does X have an embedded closed connected symplectic/Lagrangian surface L with some prescribed condition? For example, fixed homology class [L], fixed genus of L.

 (X,ω) : closed symplectic 4-manifold

- Does X have an embedded closed connected symplectic/Lagrangian surface L with some prescribed condition?
 • For example, fixed boundary class [1], fixed pages of L
- For example, fixed homology class [L], fixed genus of L.
- **2** Stability problem: does L survive when ω is perturbed?

 (X,ω) : closed symplectic 4-manifold

- Does X have an embedded closed connected symplectic/Lagrangian surface L with some prescribed condition? For example, fixed homology class [L], fixed genus of L.
- **2** Stability problem: does L survive when ω is perturbed?

Today:

 $X = X_k = \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$: rational 4-manifold

L: non-orientable Lagrangian surface within a fixed homology class $A \in H_2(X; \mathbb{Z}_2)$

Examples

• cotangent bundle: L: smooth surface λ_{can} : canonical 1-form $\omega_{can} = -d\lambda$: a symplectic form on the cotangent bundle T^*L .

 \Rightarrow {zero section} $\cong L \subset T^*L$ is a Lagrangian surface of T^*L .

Examples

• cotangent bundle: L: smooth surface λ_{can} : canonical 1-form $\omega_{can} = -d\lambda$: a symplectic form on the cotangent bundle T^*L . \Rightarrow {zero section} $\cong L \subset T^*L$ is a Lagrangian surface of T^*L .

```
• \mathbb{C}^2 with coordinates z_1 = (x_1, y_1), z_2 = (x_2, y_2)

\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2

T_{Clifford} = \{|z_1| = 1\} \times \{|z_2| = 1\}: Clifford torus

\Rightarrow T_{Clifford} is Lagrangian
```

Examples

- cotangent bundle:
 - L: smooth surface
 - λ_{can} : canonical 1-form
 - $\omega_{can} = -d\lambda$: a symplectic form on the cotangent bundle T^*L .
 - $\Rightarrow \{\mathsf{zero} \; \mathsf{section}\} \cong \mathit{L} \subset \mathit{T}^*\mathit{L} \; \mathsf{is} \; \mathsf{a} \; \mathsf{Lagrangian} \; \mathsf{surface} \; \mathsf{of} \; \mathit{T}^*\mathit{L}.$
- \mathbb{C}^2 with coordinates $z_1 = (x_1, y_1), z_2 = (x_2, y_2)$ $\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$ $T_{Clifford} = \{|z_1| = 1\} \times \{|z_2| = 1\}$: Clifford torus $\Rightarrow T_{Clifford}$ is Lagrangian
- \mathbb{CP}^2 , with Fubini-Study form ω_{FS} . $L \subset \mathbb{CP}^2$: real part $\Rightarrow L$ is Lagrangian, $L \cong \mathbb{RP}^2$, $[L] \neq 0$

Constraints

Theorem (Weinstein)

Let (X,ω) be a symplectic manifold and $L\subset X$ a compact Lagrangian submanifold. Then there exists a neighborhood $N(L)\subset T^*L$ of the zero section, a neighborhood $V\subset X$ of L, and a diffeomorphism $\phi:N(L)\to V$ such that

$$\phi^*\omega = \omega_{\it can}, \phi|_{\it L} = \it id.$$

• L: orientable

$$[L] \cdot [L] = -\chi(L)$$

Constraints

Theorem (Weinstein)

Let (X,ω) be a symplectic manifold and $L\subset X$ a compact Lagrangian submanifold. Then there exists a neighborhood $N(L)\subset T^*L$ of the zero section, a neighborhood $V\subset X$ of L, and a diffeomorphism $\phi:N(L)\to V$ such that

$$\phi^*\omega = \omega_{can}, \phi|_L = id.$$

• L: orientable

$$[L] \cdot [L] = -\chi(L)$$

• (Audin) L: nonorientable, $\mathcal{P}(A)$: Pontryagin square of A

$$\mathcal{P}([L]) \equiv \chi(L)(\bmod 4)$$

For example, if L is non-orientable Lagrangian and [L]=0, then $\chi(L)\equiv 0 (mod 4), L\cong 2\mathbb{RP}^2=KB, 6\mathbb{RP}^2, 10\mathbb{RP}^2, \cdots$

Constraints

Theorem (Weinstein)

Let (X,ω) be a symplectic manifold and $L\subset X$ a compact Lagrangian submanifold. Then there exists a neighborhood $N(L)\subset T^*L$ of the zero section, a neighborhood $V\subset X$ of L, and a diffeomorphism $\phi:N(L)\to V$ such that

$$\phi^*\omega = \omega_{can}, \phi|_L = id.$$

• L: orientable

$$[L] \cdot [L] = -\chi(L)$$

• (Audin) L: nonorientable, $\mathcal{P}(A)$: Pontryagin square of A

$$\mathcal{P}([L]) \equiv \chi(L) \pmod{4}$$

For example, if L is non-orientable Lagrangian and [L]=0, then $\chi(L)\equiv 0 \pmod{4}, L\cong 2\mathbb{RP}^2=KB, 6\mathbb{RP}^2, 10\mathbb{RP}^2, \cdots$

• (Shevchishin) $L \subset X_k$: Lagrangian, $[L] = 0 \Rightarrow L \ncong KB$.

Main theorem

Theorem (Dai-H.-Li)

Let X be a rational 4-manifold and $A \in H_2(X; \mathbb{Z}_2)$. Then A is represented by an embedded non-orientable Lagrangian surface or a sphere of Euler number χ for some symplectic structure if and only if

$$\mathcal{P}(A) \equiv \chi \pmod{4}$$

except $A = 0, \chi = 0$.

Main theorem

Theorem (Dai-H.-Li)

Let X be a rational 4-manifold and $A \in H_2(X; \mathbb{Z}_2)$. Then A is represented by an embedded non-orientable Lagrangian surface or a sphere of Euler number χ for some symplectic structure if and only if

$$\mathcal{P}(A) \equiv \chi \pmod{4}$$

except $A = 0, \chi = 0$.

Idea of proof:

find Lagrangian $m\mathbb{RP}^2$ with small m

- +"Lagrangian" connected sum
- +Lagrangian blowup

Lagrangian connected sum

• Lagrangian surgery (Polterovich): Let $L_1, L_2 \subset X$ be two Lagrangian surfaces intersecting transversally at one point. Then there exists a Lagrangian surface L' given by smoothing the intersection point. In particular, $L' \cong L_1 \# L_2$, $[L'] = [L_1] + [L_2]$.

Lagrangian connected sum

- Lagrangian surgery (Polterovich): Let $L_1, L_2 \subset X$ be two Lagrangian surfaces intersecting transversally at one point. Then there exists a Lagrangian surface L' given by smoothing the intersection point. In particular, $L' \cong L_1 \# L_2$, $[L'] = [L_1] + [L_2]$.
- Let $L \subset X$ be an immersed Lagrangian surface with a transversal self-intersection point. Then there exists an embedded Lagrangian surface L' given by smoothing the intersection point. In particular, [L'] = [L] and $L' \cong L \# T^2$ or $L' \cong L \# KB$.

Lagrangian connected sum

- Lagrangian surgery (Polterovich): Let $L_1, L_2 \subset X$ be two Lagrangian surfaces intersecting transversally at one point. Then there exists a Lagrangian surface L' given by smoothing the intersection point. In particular, $L' \cong L_1 \# L_2, [L'] = [L_1] + [L_2]$.
- Let $L \subset X$ be an immersed Lagrangian surface with a transversal self-intersection point. Then there exists an embedded Lagrangian surface L' given by smoothing the intersection point. In particular, [L'] = [L] and $L' \cong L \# T^2$ or $L' \cong L \# KB$.
- Let $L_1, L_2 \subset X$ be two disjoint Lagrangian surfaces. Then there exists a Lagrangian surface L' given by perturbing L_2 to create two intersection points and applying Lagrangian surgery. $L' \cong L_1 \# L_2 \# 2 \mathbb{RP}^2, [L'] = [L_1] + [L_2].$ In particular, if $L_2 = T^2, [L_2] = 0$, then $L' \cong L_1 \# 4 \mathbb{RP}^2, [L'] = [L].$

Symplectic/Lagrangian/relative blowup

Symplectic blowup:

Let $\tilde{B} = \{(z, l) \in \mathbb{C}^2 \times \mathbb{CP}^1 \mid z \in l\}$, $\tilde{B}_{\varepsilon} = \{(z, l) \in \tilde{B} \mid |z| \leq \varepsilon\}$, and $B_r = \{z \in \mathbb{C}^2 \mid |z| \leq r\}$. There are two natural projections $p_1 : \tilde{B} \to \mathbb{C}^2$, and $p_2 : \tilde{B} \to \mathbb{CP}^1$. p_1 implies that \tilde{B} is the blowup of \mathbb{C}^2 at the origin.

For any $\lambda > 0$, let $\omega_{\lambda} = p_1^* \omega_0 + \lambda^2 p_2^* \omega_{FS}$ be the induced symplectic form on \tilde{B} .

There is a symplectomorphism

$$\alpha: (\tilde{B}_{\varepsilon} - \mathbb{CP}^1, \omega_{\lambda}) \cong (B_{\sqrt{\lambda^2 + \varepsilon^2}} - \overline{B_{\lambda}}, \omega_0).$$

Let X be a symplectic 4-manifold, $x \in U \subset X$ and $\delta > \sqrt{\lambda^2 + \varepsilon^2}$, $\phi: (U, \omega) \to (B_\delta, \omega_0)$ a symplectomorphism with $\phi(x) = 0$. A symplectic blowup of X at x is $X' = (X - \phi^{-1}(B_\lambda) \cup \tilde{B}_\varepsilon / \sim$ where $a \sim b \Leftrightarrow a = \alpha(b)$ and a symplectic form ω' on X' is induced by ω and ω_λ .

Let $p: X' \to X$ the project map, $E = PD(\mathbb{CP}^2) \in H^2(X'; \mathbb{Z})$. Then $[\omega'] = [p^*\omega] + \pi \lambda^2 E$.

Symplectic/Lagrangian/relative blowup

Lagrangian blowup:

(Rieser) $L \subset X, x \in L$. There exists a symplectic manifold $(\tilde{X}, \tilde{\omega})$, a Lagrangian submanifold $\tilde{L} \subset \tilde{X}$, a smooth onto map $p: \tilde{X} \to X$ such that

- $p: p^{-1}(X-x) \to X-x$ is a diffeomorphism.
- $\bullet p^{-1}(x) \cong \mathbb{CP}^1.$
- $E = PD(p^{-1}(x)), \ [\tilde{\omega}] = [p^*\omega] + \pi \lambda^2 E.$
- $p(\tilde{L}) = L, \tilde{L} \cong L \# \mathbb{RP}^2, \ [\tilde{L}] = p^*[L] + E(mod \ 2).$

Symplectic/Lagrangian/relative blowup

Lagrangian blowup:

(Rieser) $L \subset X, x \in L$. There exists a symplectic manifold $(\tilde{X}, \tilde{\omega})$, a Lagrangian submanifold $\tilde{L} \subset \tilde{X}$, a smooth onto map $p: \tilde{X} \to X$ such that

- $p: p^{-1}(X-x) \to X-x$ is a diffeomorphism.
- $p^{-1}(x) \cong \mathbb{CP}^1$.
- $E = PD(p^{-1}(x)), \ [\tilde{\omega}] = [p^*\omega] + \pi \lambda^2 E.$
- $p(\tilde{L}) = L, \tilde{L} \cong L \# \mathbb{RP}^2, \ [\tilde{L}] = p^*[L] + E(mod \ 2).$

Relative blowup:

 $L \subset (X, \omega)$: Lagrangian, $x \in X - L$. There exists a symplectic blowup $p: X' \to X$ at x such that $L' = p^{-1}(L)$ is Lagrangian and $L' \cong L, [L'] = p^*[L]$.

• $\Omega(X) = \{\text{symplectic forms on } X\}$ $C(X) = \{[\omega] | \omega \in \Omega(X)\}: \text{ symplectic cone of } X$

- $\Omega(X) = \{\text{symplectic forms on } X\}$ $C(X) = \{[\omega] | \omega \in \Omega(X)\}: \text{ symplectic cone of } X$
- $\mathcal{K}(X) = \{ \text{symplectic canonical classes} \}$ $C_{\mathcal{K}}(X) = \{ [\omega] | \omega \in \Omega(X), \mathcal{K}_{\omega} = \mathcal{K} \}$ $\mathcal{K} \in \mathcal{K}(X), \ \mathcal{E}_{\mathcal{K}}(X) = \{ e \in H^2(X; \mathbb{Z}) | PD(e) \text{ is represented by a smoothly embedded (-1)-sphere, } e \cdot \mathcal{K} = -1 \}.$

Theorem (Li-Liu)

Let X be a closed oriented smooth 4-manifold and $b^+(X) = 1$, $C(X) \neq \emptyset$.

- **1** Any class in $\mathcal{E}_K(X)$ is represented by a ω -symplectic (-1)-sphere for any $\omega \in \mathcal{C}_K(X)$.
- **③** $|\mathcal{K}(X)|$ < ∞ and $\mathcal{K}(X)$ is transitive under diffeomorphism.

Let $\{H, E_1, \cdots, E_k\}$ be a standard basis of $H^2(X_k; \mathbb{Z})$, $H^2 = 1, H \cdot E_i = 0, E_i, \cdots, E_j = -\delta_{ij}$. Assume the canonical class is $K_0 = -3H + E_1 + \cdots + E_k$. $[\omega] = aH - \sum b_i E_i \in C_K(X)$ $\Leftrightarrow \begin{cases} a^2 - \sum b_i^2 > 0 \\ a > 0, b_i > 0 \\ e = pH - \sum q_i E_i \in \mathcal{E}_K(X), [\omega] \cdot e = ap - \sum b_i q_i > 0 \end{cases}$

```
Let \{H, E_1, \dots, E_k\} be a standard basis of H^2(X_k; \mathbb{Z}),
 H^2 = 1, H \cdot E_i = 0, E_i, \cdots, E_i = -\delta_{ii}.
Assume the canonical class is K_0 = -3H + E_1 + \cdots + E_k.
 [\omega] = aH - \sum b_i E_i \in C_K(X)
\Leftrightarrow \begin{cases} a^2 - \sum b_i^2 > 0 \\ a > 0, b_i > 0 \\ e = pH - \sum q_i E_i \in \mathcal{E}_K(X), [\omega] \cdot e = ap - \sum b_i q_i > 0 \end{cases}
 Examples: Consider NC(X) = \{aH - \sum b_i E_i \in C(X) | a = 1\}
     • In X_2, E_1, E_2, H - E_1 - E_2 \in \mathcal{E}_K(X_2)
         \begin{cases} b_1^2 + b_2^2 < 1 \\ b_1, b_2 > 0 \\ b_1 + b_2 < 1 \end{cases}
    • In X_3, E_1, E_2, E_3, H - E_i - E_i \in \mathcal{E}_K(X_2)
         \begin{cases} b_1^2 + b_2^2 + b_3^2 < 1 \\ b_1, b_2, b_3 > 0 \\ b_i + b_i < 1 \end{cases}
```

• $n \in \mathbb{N}, A \in H_2(X; \mathbb{Z}_2),$ $C_{n,A}(X) = \{ [\omega] | \omega \in \Omega(X), \exists L : \text{nonorientable } \omega\text{-Lagrangian} \}$ surface, $[L] = A, L \cong n\mathbb{RP}^2 \}.$ $C_n(X) = \bigcup_A C_{n,A}(X)$

- $n \in \mathbb{N}, A \in H_2(X; \mathbb{Z}_2),$ $C_{n,A}(X) = \{ [\omega] | \omega \in \Omega(X), \exists L : \text{nonorientable } \omega\text{-Lagrangian} \}$ surface, $[L] = A, L \cong n\mathbb{RP}^2 \}.$ $C_n(X) = \bigcup_A C_{n,A}(X)$
- (X,ω) has a Lagrangian $n\mathbb{RP}^2 \Leftrightarrow [\omega] \in \mathcal{C}_n(X)$

- $n \in \mathbb{N}, A \in H_2(X; \mathbb{Z}_2),$ $C_{n,A}(X) = \{ [\omega] | \omega \in \Omega(X), \exists L : \text{nonorientable } \omega\text{-Lagrangian surface, } [L] = A, L \cong n\mathbb{RP}^2 \}.$ $C_n(X) = \bigcup_A C_{n,A}(X)$
- (X,ω) has a Lagrangian $n\mathbb{RP}^2 \Leftrightarrow [\omega] \in C_n(X)$
- Lagrangian connected sum $\Rightarrow C_{n,A}(X) \subset C_{n+4,A}(X)$.

- $n \in \mathbb{N}, A \in H_2(X; \mathbb{Z}_2),$ $C_{n,A}(X) = \{ [\omega] | \omega \in \Omega(X), \exists L : \text{nonorientable } \omega\text{-Lagrangian} \}$ surface, $[L] = A, L \cong n\mathbb{RP}^2 \}.$ $C_n(X) = \bigcup_A C_{n,A}(X)$
- (X,ω) has a Lagrangian $n\mathbb{RP}^2 \Leftrightarrow [\omega] \in C_n(X)$
- Lagrangian connected sum $\Rightarrow C_{n,A}(X) \subset C_{n+4,A}(X)$.
- Question:
 - **1** What is $C_{n,A}(X)$? What is $C_n(X)$?
 - 2 $C_{n,A}(X) = C_{n+4,A}(X)$?

The structure of symplectic cone is related to the symplectic packing problem.

• A symplectic packing of (X, ω) is a symplectic embedding

$$\varphi(c_1,\cdots,c_k):\coprod B(\sqrt{\frac{c_i}{\pi}},\omega_0)\to (X,\omega)$$

Let $Emb(X, \omega) = \{\text{symplectic packing of } (X, \omega)\}$

• A symplectic packing of (X, ω) is a symplectic embedding

$$\varphi(c_1,\cdots,c_k):\coprod B(\sqrt{\frac{c_i}{\pi}},\omega_0)\to (X,\omega)$$

Let $Emb(X, \omega) = \{\text{symplectic packing of } (X, \omega)\}$

Applying symplectic blowup,

$$\varphi(c_1,\cdots,c_k) \in Emb(X,\omega) \Longrightarrow [p^*\omega] - \sum c_i E_i \in C(X\#\overline{\mathbb{CP}^2})$$

ullet A symplectic packing of (X,ω) is a symplectic embedding

$$\varphi(c_1,\cdots,c_k):\coprod B(\sqrt{\frac{c_i}{\pi}},\omega_0)\to (X,\omega)$$

Let $Emb(X, \omega) = \{\text{symplectic packing of } (X, \omega)\}$

- Applying symplectic blowup,
 - $\varphi(c_1,\cdots,c_k)\in Emb(X,\omega)\Longrightarrow [p^*\omega]-\sum c_iE_i\in C(X\#\overline{\mathbb{CP}^2})$
- (McDuff-Polterovich) $X = X_k, k \leq 8$, $H \sum c_i E_i \in NC_{K_0}(X) \Rightarrow \exists \varphi(c_1, \cdots, c_k) \in Emb(\mathbb{CP}^2, \omega_{FS})$.

• A symplectic packing of (X, ω) is a symplectic embedding

$$\varphi(c_1,\cdots,c_k):\coprod B(\sqrt{\frac{c_i}{\pi}},\omega_0)\to (X,\omega)$$

Let $Emb(X, \omega) = \{\text{symplectic packing of } (X, \omega)\}$

- Applying symplectic blowup, $\varphi(c_1, \dots, c_k) \in Emb(X, \omega) \Longrightarrow [p^*\omega] \sum c_i E_i \in C(X \# \overline{\mathbb{CP}^2})$
- (McDuff-Polterovich) $X = X_k, k \leq 8$, $H \sum c_i E_i \in NC_{K_0}(X) \Rightarrow \exists \varphi(c_1, \dots, c_k) \in Emb(\mathbb{CP}^2, \omega_{FS})$.
- Let Z be a submanifold of (X, ω) . A relative (symplectic) packing of (X, Z) is a symplectic packing

$$\varphi(c_1,\cdots,c_k):\coprod B(\sqrt{\frac{c_i}{\pi}},\omega_0)\to (X-Z,\omega)$$

i.e. $\varphi(c_1, \dots, c_k) \in Emb(X - Z, \omega)$ Similarly, a relative packing $\varphi(c_1, \dots, c_k) \in Emb(X - Z, \omega)$ induces a symplectic structure in $X \# \overline{\mathbb{CP}^2}$. But we don't know if the converse is true.

• (Borman-Li-Wu) Symplectic packing for $(\mathbb{CP}^2 - \mathbb{RP}^2, \omega_{FS})$ and $(S^2 \times S^2, \Omega_{1,\frac{1}{2}})$ are equivalent.

$$\mathit{Emb}(\mathbb{CP}^2 - \mathbb{RP}^2, \omega_{\mathit{FS}}) \longleftrightarrow \mathit{Emb}(S^2 \times S^2, \Omega_{1,\frac{1}{2}})$$

Idea: Inflation, rational blowdown

• (Borman-Li-Wu) Symplectic packing for $(\mathbb{CP}^2 - \mathbb{RP}^2, \omega_{FS})$ and $(S^2 \times S^2, \Omega_{1,\frac{1}{2}})$ are equivalent.

$$\mathit{Emb}(\mathbb{CP}^2 - \mathbb{RP}^2, \omega_{\mathit{FS}}) \longleftrightarrow \mathit{Emb}(S^2 \times S^2, \Omega_{1,\frac{1}{2}})$$

Idea: Inflation, rational blowdown

• We can view $S^2 \times S^2 \sharp k \overline{\mathbb{CP}^2}$ as $X' = \mathbb{CP}^2 \sharp (k+1) \overline{\mathbb{CP}^2}$ with standard basis $H', E'_1, \cdots, E'_{k+1}$. $\omega = H - c_1 E_1 - \cdots c_k E_k \in C_{1,H}(X_k)$ corresponds to a symplectic form

$$\omega' = (\frac{3}{2} - c_1)H' - (1 - c_1)E_1' - (\frac{1}{2} - c_1)E_2' - \sum_{i=2}^k c_i E_{i+1}' \in C(X_{k+1})$$

• (Borman-Li-Wu) Symplectic packing for $(\mathbb{CP}^2 - \mathbb{RP}^2, \omega_{FS})$ and $(S^2 \times S^2, \Omega_{1,\frac{1}{2}})$ are equivalent.

$$\mathit{Emb}(\mathbb{CP}^2 - \mathbb{RP}^2, \omega_{\mathit{FS}}) \longleftrightarrow \mathit{Emb}(S^2 \times S^2, \Omega_{1,\frac{1}{2}})$$

Idea: Inflation, rational blowdown

• We can view $S^2 \times S^2 \sharp k \overline{\mathbb{CP}^2}$ as $X' = \mathbb{CP}^2 \sharp (k+1) \overline{\mathbb{CP}^2}$ with standard basis $H', E'_1, \cdots, E'_{k+1}$. $\omega = H - c_1 E_1 - \cdots c_k E_k \in C_{1,H}(X_k)$ corresponds to a symplectic form

$$\omega' = (\frac{3}{2} - c_1)H' - (1 - c_1)E_1' - (\frac{1}{2} - c_1)E_2' - \sum_{i=2}^k c_i E_{i+1}' \in C(X_{k+1})$$

• Use Cremona transformation, it is enough to understand $C_{1,H}(X_k)$.

Observations:

- $C_{1,H}(X_k)$ can be embedded to $C(X_{k+1})$ as a hyper surface.
- $C_{1,H}(X_k) \subset C(X_k)$ is bounded by some hyperplane with symmetric coefficients.
- $NC_{1,H}(X_k)$ is a polyhedron when $k \leq 8$.

Observations:

- $C_{1,H}(X_k)$ can be embedded to $C(X_{k+1})$ as a hyper surface.
- $C_{1,H}(X_k) \subset C(X_k)$ is bounded by some hyperplane with symmetric coefficients.
- $NC_{1,H}(X_k)$ is a polyhedron when $k \leq 8$.

Questions:

- Is $C_{1,H}(X_k)$ a polyhedron?
- Can $C_{1,H}(X_8)$ be determined by finite many hyperplanes in $C(X_9)$?
- More symmetric structures on $C_{1,H}(X_k)$, $C_1(X_k)$.

Thank you