Pin(2)-equivariant maps between vector bundles over tori and KO-degree

Ko Ohashi

The University of Tokyo

September 12, 2018

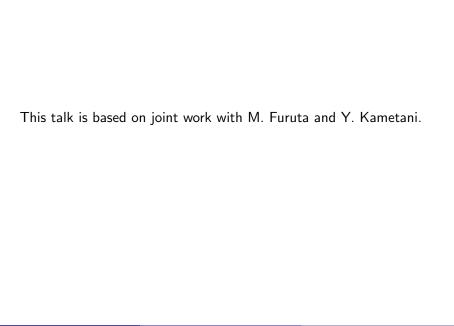


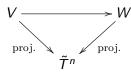
Table of Contents

- Introduction
- 2 sp-bundles and the Ksp-group
- Borsuk-Ulam type Inequality
- 4 10/8-type inequality
- 5 KO-degree
- 6 Proof

- Introduction
- 2 sp-bundles and the Ksp-group
- Borsuk-Ulam type Inequality
- 4 10/8-type inequality
- 6 KO-degree
- Proof

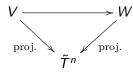
Introduction

• This talk concerns Pin(2)-equivariant maps between Pin(2)-vector bundles over tori.



Introduction

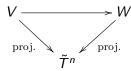
• This talk concerns Pin(2)-equivariant maps between Pin(2)-vector bundles over tori.



• I will explain the background and motivation of this talk.

Introduction

 This talk concerns Pin(2)-equivariant maps between Pin(2)-vector bundles over tori.



• I will explain the background and motivation of this talk.

Convention

- All manifolds are assumed to be connected, closed, and smooth.
- ▶ Pin(2) is defined as the subset $S^1 \cup jS^1$ of the quaternions \mathbb{H} .

The Monopole Map

• Let X be a spin 4-manifold with indefinite intersection form and $b_2^+(X) > 0$. Fix a Riemannian metric on X.

The Monopole Map

- Let X be a spin 4-manifold with indefinite intersection form and $b_2^+(X) > 0$. Fix a Riemannian metric on X.
- We consider the monopole equation as the map

$$\begin{split} \Phi : \mathsf{Ker} \big(\Omega^1 \overset{d^*}{\to} \Omega^0 \big) \oplus \Gamma(S^+) &\to H^1(X; \mathbb{R}) \times (\Omega^+ \oplus \Gamma(S^-)), \\ \Phi(a,s) &= ((a)_{\mathsf{harmonic}}, d^+ a + q(s), D_a s) \end{split}$$

where

- $ightharpoonup \Omega^p$ is the set of all differential p-forms on X,
- $ightharpoonup \Gamma(S^{\pm})$ is the set of all sections of the half-spinor bundles S^{\pm} of X,
- $q:\Gamma(S^+)\to\Omega^+$ is the quadratic map,
- $(a)_{\text{harmonic}}$ is the harmonic part of $a \in \Omega^1$,
- D is the Dirac operator.

Symmetry

The monopole map

$$\Phi: \mathsf{Ker}(\Omega^1 \stackrel{d^*}{\to} \Omega^0) \oplus \Gamma(S^+) \to H^1(X;\mathbb{R}) \times (\Omega^+ \oplus \Gamma(S^-))$$

Symmetry

The monopole map

$$\Phi: \mathsf{Ker}(\Omega^1 \overset{d^*}{ o} \Omega^0) \oplus \Gamma(S^+) o H^1(X;\mathbb{R}) imes (\Omega^+ \oplus \Gamma(S^-))$$

- The spin structure of X provides the Pin(2)-equivariance of Φ .
 - ▶ Pin(2) acts on Ω^p and $H^1(X; \mathbb{R})$ via Pin(2) \to Pin(2)/ $S^1 = \{\pm 1\}$.
 - ▶ Pin(2) acts on $\Gamma(S^{\pm}) = \Gamma(P \times_{\text{Spin}} \mathbb{H}^{\pm})$ via Pin(2) \to Sp(1).
 - Φ is Pin(2)-equivariant.

Symmetry

The monopole map

$$\Phi: \mathsf{Ker}(\Omega^1 \stackrel{d^*}{ o} \Omega^0) \oplus \Gamma(S^+) o H^1(X;\mathbb{R}) imes (\Omega^+ \oplus \Gamma(S^-))$$

- The spin structure of X provides the Pin(2)-equivariance of Φ .
 - ▶ Pin(2) acts on Ω^p and $H^1(X; \mathbb{R})$ via Pin(2) \to Pin(2)/ $S^1 = \{\pm 1\}$.
 - ▶ Pin(2) acts on $\Gamma(S^{\pm}) = \Gamma(P \times_{\text{Spin}} \mathbb{H}^{\pm})$ via Pin(2) \to Sp(1).
 - Φ is Pin(2)-equivariant.
- The gauge symmetry provides the $H^1(X; \mathbb{Z})$ -equivariance of Φ .
 - $a\in H^1(X;\mathbb{Z})$ acts on $\omega\in\Omega^1,\eta\in\Omega^+$ and $s\in\Gamma(S^\pm)$ by

$$a \cdot \omega = (a)_{harmonic} + \omega, \ a \cdot \eta = \eta, \ a \cdot s = \exp(2\pi \sqrt{-1}\rho(a))s.$$

Here $\rho: H^1(X; \mathbb{Z}) \to C^\infty(X, \mathbb{R}/\mathbb{Z})$ is defined as

$$\rho([\omega])(x) = \int_{x_0}^x \omega \mod \mathbb{Z}, \quad x \in X, \ \omega \in \Omega^1.$$

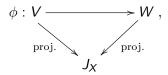
▶ Φ is $H^1(X; \mathbb{Z})$ -equivariant.

Finite-dimensional approximation

• By taking the quotient by $H^1(X; \mathbb{Z})$ and a finite dimensional approximation of the map

$$\Phi: \mathsf{Ker}(\Omega^1 \overset{d^*}{ o} \Omega^0) \oplus \Gamma(S^+) o H^1(X; \mathbb{R}) imes (\Omega^+ \oplus \Gamma(S^-)),$$

we obtain

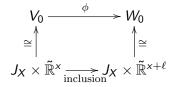


where V and W are finite dimensional real Pin(2)-vector bundles over the Jacobian torus $J_X = H^1(X; \mathbb{R})/H^1(X; \mathbb{Z})$.

1 $\phi: V \to W$ is a proper, fiber-preserving, Pin(2)-equivariant map.

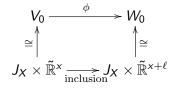
- **①** $\phi: V \to W$ is a proper, fiber-preserving, Pin(2)-equivariant map.
- ② The linear action of $-1 \in \operatorname{Pin}(2)$ on V induces the decomposition $V = V_0 \oplus V_1$. Here $V_0 = \{v \mid (-1) \cdot v = v\}$ and $V_1 = \{v \in V \mid (-1) \cdot v = -v\}$. Similarly we have $W = W_0 \oplus W_1$.

- **1** $\phi: V \to W$ is a proper, fiber-preserving, Pin(2)-equivariant map.
- ② The linear action of $-1 \in \operatorname{Pin}(2)$ on V induces the decomposition $V = V_0 \oplus V_1$. Here $V_0 = \{v \mid (-1) \cdot v = v\}$ and $V_1 = \{v \in V \mid (-1) \cdot v = -v\}$. Similarly we have $W = W_0 \oplus W_1$.



where $\tilde{\mathbb{R}}$ is the 1-dimensional real representation of Pin(2) defined by $j \cdot x = -x$ and $z \cdot x = x$ for $z \in S^1, x \in \tilde{\mathbb{R}}$.

- **1** $\phi: V \to W$ is a proper, fiber-preserving, Pin(2)-equivariant map.
- ② The linear action of $-1 \in \operatorname{Pin}(2)$ on V induces the decomposition $V = V_0 \oplus V_1$. Here $V_0 = \{v \mid (-1) \cdot v = v\}$ and $V_1 = \{v \in V \mid (-1) \cdot v = -v\}$. Similarly we have $W = W_0 \oplus W_1$.



where $\tilde{\mathbb{R}}$ is the 1-dimensional real representation of Pin(2) defined by $j \cdot x = -x$ and $z \cdot x = x$ for $z \in S^1, x \in \tilde{\mathbb{R}}$.

1 V_1 and W_1 are the realification of "sp-bundles" V_{sp} and W_{sp} . such that some class of the "Ksp-invariants" of the difference between W_{sp} and V_{sp} vanish.

Main results

- A Borsuk-Ulam type inequality for the existence of Pin(2)-equivariant maps
- ② A 10/8-type inequality for $b_1(X) \ge 0$
- **3** Determination of the KO_{Γ}-degree of ϕ for $b_2^+(X)$ even

- Introduction
- 2 sp-bundles and the Ksp-group
- Borsuk-Ulam type Inequality
- 4 10/8-type inequality
- 6 KO-degree
- 6 Proof

Contents

- sp-bundle and the Ksp-group
- \bigcirc Ksp (\tilde{T}^n)
- 3 The realification of a sp-bundle

sp-bundle

- Let B be a C_2 -space (C_2 denotes the cyclic group of order two).
- $j_B: B \to B$: the involution on B.

Definition (Dupont)

A sp-bundle is a complex vector bundle V over B with an antilinear map $J:V\to V$ satisfying the following conditions.

- **1** J is a lift of j_B . That is $\pi_V \circ J = j_B \circ \pi_V$.

Ksp-group

Definition

For any compact Hausdorff C_2 -space B, the Ksp-group $\mathsf{Ksp}(B)$ of B is defined by

$$Ksp(B) = F(B)/Q(B),$$

- F(B) is the free abelian group generated by the isom. classes of sp-bundles over B.
- Q(B) is the subgroup of F(B) generated by $[V] + [W] [V \oplus W], \ V, W$: sp-bundles

Ksp-group

Definition

For any compact Hausdorff C_2 -space B, the Ksp-group $\mathsf{Ksp}(B)$ of B is defined by

$$Ksp(B) = F(B)/Q(B),$$

- F(B) is the free abelian group generated by the isom. classes of sp-bundles over B.
- Q(B) is the subgroup of F(B) generated by $[V] + [W] [V \oplus W], \ V, W$: sp-bundles

Definition

For any locally compact C_2 -space U, Ksp(U) is defined by

$$\mathsf{Ksp}(\mathit{U}) = \mathsf{Ker}(\mathsf{Ksp}(\mathit{U}^+) \to \mathsf{Ksp}(\{\infty\})),$$

where $U^+ = U \cup \{\infty\}$ is the one-point compactification of U.

Computations

Example

1 The Ksp-group of $\tilde{\mathbb{R}}^p$ (with $j_B(v) = -v$) is given by

$$\operatorname{\mathsf{Ksp}}(\tilde{\mathbb{R}}^p)\cong egin{cases} \mathbb{Z} & p\equiv 0,4\ \operatorname{\mathsf{mod}}\ 8\ \mathbb{Z}/2\mathbb{Z} & p\equiv 2,3\ \operatorname{\mathsf{mod}}\ 8\ 0 & \operatorname{\mathsf{otherwise}}. \end{cases}$$

Computations

Example

1 The Ksp-group of \mathbb{R}^p (with $j_B(v) = -v$) is given by

$$\operatorname{\mathsf{Ksp}}(ilde{\mathbb{R}}^p)\cong egin{cases} \mathbb{Z} & p\equiv 0,4\ \mathsf{mod}\ 8\ \mathbb{Z}/2\mathbb{Z} & p\equiv 2,3\ \mathsf{mod}\ 8\ 0 & \mathsf{otherwise}. \end{cases}$$

2 Let $\tilde{\mathcal{T}}^n$ be the *n*-dimensional torus $\tilde{\mathbb{R}}^n/\mathbb{Z}^n$. The Ksp-group of $\tilde{\mathcal{T}}^n$ can be computed by

$$\mathsf{Ksp}(\tilde{\mathcal{T}}^n) \cong \bigoplus_{S \subset [n]} \mathsf{Ksp}(\tilde{\mathbb{R}}^S),$$

where the symbol [n] stands for the set $\{1, 2, ..., n\}$ and \mathbb{R}^S denotes the set of all maps from S to \mathbb{R} .

The realification of a sp-bundle

Remark

For any C_2 -space B, we regard B as a Pin(2)-space via the map $Pin(2) \to Pin(2)/S^1 = C_2$.

Definition

The realification of a sp-bundle (V, J) is the underlying real vector bundle rV with the Pin(2)-action defined by

$$z \cdot v := zv, \quad j \cdot v := J(v)$$

for $v \in rV, z \in S^1$.

sp-bundles → real Pin(2)-vector bundles

- Introduction
- 2 sp-bundles and the Ksp-group
- Borsuk-Ulam type Inequality
- 4 10/8-type inequality
- 6 KO-degree
- 6 Proof

Contents

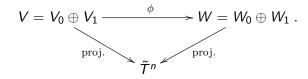
- Setting and Assumptions
- 2 The Ksp-invariants as
- **3** Definition of ν_S
- Inequality

• Let V and W be Pin(2)-vector bundles over \tilde{T}^n , $n \ge 0$.

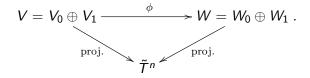
- Let V and W be Pin(2)-vector bundles over \tilde{T}^n , $n \ge 0$.
- ullet Given a proper, fiber-preserving, Pin(2)-map $\phi:V o W$.

- Let V and W be Pin(2)-vector bundles over \tilde{T}^n , $n \ge 0$.
- Given a proper, fiber-preserving, Pin(2)-map $\phi: V \to W$.
- The linear action by $-1 \in \text{Pin}(2)$ on V, W defines the decompositions $V = V_0 \oplus V_1$ and $W = W_0 \oplus W_1$, respectively.

- Let V and W be Pin(2)-vector bundles over \tilde{T}^n , $n \ge 0$.
- Given a proper, fiber-preserving, Pin(2)-map $\phi: V \to W$.
- The linear action by $-1 \in \text{Pin}(2)$ on V, W defines the decompositions $V = V_0 \oplus V_1$ and $W = W_0 \oplus W_1$, respectively.



- Let V and W be Pin(2)-vector bundles over \tilde{T}^n , $n \ge 0$.
- Given a proper, fiber-preserving, Pin(2)-map $\phi: V \to W$.
- The linear action by $-1 \in \text{Pin}(2)$ on V, W defines the decompositions $V = V_0 \oplus V_1$ and $W = W_0 \oplus W_1$, respectively.



Assumptions

- V_0, W_0 are given by $V_0 = \tilde{T}^n \times \tilde{\mathbb{R}}^x, \ W_0 = \tilde{T}^n \times \tilde{\mathbb{R}}^{x+\ell}$ with $\ell > 0$.
- $ullet \phi|_{V_0}:V_0 o W_0$ is given by the inclusion map $\tilde{\mathbb{R}}^{\mathsf{x}}\hookrightarrow \tilde{\mathbb{R}}^{\mathsf{x}+\ell}.$
- V_1, W_1 are given by the realifications of sp-bundles V_{sp}, W_{sp} over \tilde{T}^n , respectively.

Ksp-invariant

The sp-bundles V_{sp} , W_{sp} define an element $a:=[W_{sp}]-[V_{sp}]\in \mathsf{Ksp}(\tilde{\mathcal{T}}^n)$. Using the isomorphism $\mathsf{Ksp}(\tilde{\mathcal{T}}^n)\cong \bigoplus_{S\subset [n]}\mathsf{Ksp}(\tilde{\mathbb{R}}^S)$, it can be decomposed as

$$a = \sum_{S \subset [n]} a_S$$

where

$$a_S \in \mathsf{Ksp}(\tilde{\mathbb{R}}^S) \cong egin{cases} \mathbb{Z} & |S| \equiv_8 0, 4 \ \mathbb{Z}/2\mathbb{Z} & |S| \equiv_8 2, 3 \ 0 & \text{otherwise.} \end{cases}$$

Ksp-invariant

The sp-bundles V_{sp} , W_{sp} define an element $a:=[W_{sp}]-[V_{sp}]\in \mathsf{Ksp}(\tilde{\mathcal{T}}^n)$. Using the isomorphism $\mathsf{Ksp}(\tilde{\mathcal{T}}^n)\cong \bigoplus_{S\subset [n]}\mathsf{Ksp}(\tilde{\mathbb{R}}^S)$, it can be decomposed as

$$a = \sum_{S \subset [n]} a_S$$

where

$$a_S \in \mathsf{Ksp}(\tilde{\mathbb{R}}^S) \cong egin{cases} \mathbb{Z} & |S| \equiv_8 0, 4 \ \mathbb{Z}/2\mathbb{Z} & |S| \equiv_8 2, 3 \ 0 & \text{otherwise.} \end{cases}$$

Assumption

If |S| > 4, then $a_S = 0$.

Invariant ν_S

Invariant ν_S

1 Let *S* be a subset of $[n] = \{1, 2, ..., n\}$.

Invariant ν_{ς}

- **1** Let *S* be a subset of $[n] = \{1, 2, ..., n\}$.
- ② The integer $N_m(S)$, $m \ge 0$ is defined to be the number of families $\{S_1, \ldots, S_m\}$ of S such that

$$S_i \neq S_j \ (i \neq j), \ S = S_1 \cup \cdots \cup S_m, \ |S_i| \in \{2, 3, 4\},$$

 $a_{S_i} \neq 0 \in \mathsf{Ksp}(\tilde{\mathbb{R}}^{S_i}) \otimes \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}.$

Invariant ν_S

- **1** Let *S* be a subset of $[n] = \{1, 2, ..., n\}$.
- ② The integer $N_m(S)$, $m \ge 0$ is defined to be the number of families $\{S_1, \ldots, S_m\}$ of S such that

$$S_i \neq S_j \ (i \neq j), \ S = S_1 \cup \cdots \cup S_m, \ |S_i| \in \{2, 3, 4\},$$

 $a_{S_i} \neq 0 \in \mathsf{Ksp}(\tilde{\mathbb{R}}^{S_i}) \otimes \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}.$

3 The integer N(S) is defined by

$$N(S) = \sum_{m=0}^{\infty} (-2)^m N_m(S).$$

Invariant ν_{ς}

- **1** Let *S* be a subset of $[n] = \{1, 2, ..., n\}$.
- ② The integer $N_m(S)$, $m \ge 0$ is defined to be the number of families $\{S_1, \ldots, S_m\}$ of S such that

$$S_i \neq S_j \ (i \neq j), \ S = S_1 \cup \cdots \cup S_m, \ |S_i| \in \{2, 3, 4\},$$

 $a_{S_i} \neq 0 \in \mathsf{Ksp}(\tilde{\mathbb{R}}^{S_i}) \otimes \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}.$

o The integer N(S) is defined by

$$N(S) = \sum_{m=0}^{\infty} (-2)^m N_m(S).$$

4 The integer ν_S is defined by

$$\nu_S := \max\{\nu \mid 2^{\nu} \text{ divides } N(S)\}$$

Main result

Theorem

If there exists a Pin(2)-map $\phi: V = V_0 \oplus V_1 \to W = W_0 \oplus W_1$ satisfying the assumptions, then we have the inequality

$$\ell_{S} \geq 2k_{S} + \varepsilon(k_{S}, \ell, |S|)$$

 $(\Leftrightarrow \ell \geq 2k + |S| - 2\nu_{S} + \varepsilon(k - \nu_{S}, \ell, |S|)).$

Here $\ell_S = \ell - |S|$, $k_S = k - \nu_S$, and $\varepsilon(k_S, \ell, |S|)$ is defied by the following table.

	S : even				S : odd				
р	0	1	2	3	0	1	2	3	
$\varepsilon(p,\ell, S)$	$3 (I \neq 2)$ 1 (I = 2)	1	2	3	2	1	2	2	

- Introduction
- 2 sp-bundles and the Ksp-group
- Borsuk-Ulam type Inequality
- 4 10/8-type inequality
- 6 KO-degree
- Proof

Contents

- Setting
- \circ Calculation of $a_S(X)$
- 3 10/8-type inequality
- **3** Example $X = X' \# (\#^m T^4)$

Setting

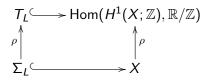
- Let X be a spin 4-manifold with indefinite intersection form and $b_2^+(X) > 0$.
- Let $\phi: V \to W$ be a finite-dimensional approximation of the monopole map Φ .
- $\ell := b_2^+(X), \quad k := -\operatorname{sign}(X)/16.$
- Let $a(X) = \sum_{S \subset [n]} a_S(X)$ be the Ksp-invariant.

• Let L be a sublattice of $H^1(X; \mathbb{Z})$ with rank r.

- Let *L* be a sublattice of $H^1(X; \mathbb{Z})$ with rank *r*.
- We define the submanifold Σ_L of X as follows:

- Let L be a sublattice of $H^1(X; \mathbb{Z})$ with rank r.
- We define the submanifold Σ_L of X as follows:
- $T_L := \text{Hom}(H^1(X; \mathbb{Z})/L, \mathbb{R}/\mathbb{Z})$ is a subtorus of $\text{Hom}(H^1(X; \mathbb{Z}), \mathbb{R}/\mathbb{Z})$ of codimension r.

- Let L be a sublattice of $H^1(X; \mathbb{Z})$ with rank r.
- We define the submanifold Σ_L of X as follows:
- $T_L := \text{Hom}(H^1(X; \mathbb{Z})/L, \mathbb{R}/\mathbb{Z})$ is a subtorus of $\text{Hom}(H^1(X; \mathbb{Z}), \mathbb{R}/\mathbb{Z})$ of codimension r.
- Then $\Sigma_L := \rho^{-1}(T_L)$ is a submanifold of X of codimension r. Here $\rho: X \to \operatorname{Hom}(H^1(X; \mathbb{Z}), \mathbb{R}/\mathbb{Z})$ is the Albanese map. The spin structure of X induces a spin structure of Σ_L .



Calculation of $a_S(X)$

- Fix a \mathbb{Z} -basis $\{x_1, \ldots, x_n\}$ of $H^1(X; \mathbb{Z})$.
- For any subset $S \subset [n]$, we define L(S) as the sublattice generated by the set $\{x_s|s\in S\}$ and set $\Sigma_S:=\Sigma_{L(S)}$.

Calculation of $a_S(X)$

- Fix a \mathbb{Z} -basis $\{x_1, \ldots, x_n\}$ of $H^1(X; \mathbb{Z})$.
- For any subset $S \subset [n]$, we define L(S) as the sublattice generated by the set $\{x_s | s \in S\}$ and set $\Sigma_S := \Sigma_{L(S)}$.

Theorem

Under the isomorphism $\mathsf{Ksp}(\tilde{\mathbb{R}}^S) \cong \mathsf{KO}^{|S|-4}(\mathrm{pt.})$, we have

$$a_{\mathcal{S}}(X) = \alpha([\Sigma_{\mathcal{S}}]),$$

where α denotes the α -invariant $\alpha: \Omega_*^{spin} \to \mathsf{KO}^{-*}(\mathrm{pt.})$.

Corollary

By Theorem $a_S(X) = \alpha([\Sigma_S])$, we obtain the following corollary.

Corollary

- If |S| > 4, then $a_S(X) = 0$.
- If |S| = 0 or 4, then it can be written (up to sign) as

$$a_S(X) = \begin{cases} \operatorname{sign}(X)/16 & |S| = 0\\ \int_X x_S & |S| = 4, \ x_S = \cup_{s \in S} x_s \end{cases}$$

Theorem

$$b_2^+(X) \ge -\frac{\operatorname{sign}(X)}{8} + |S| - \nu_S + \varepsilon(k_S, \ell, |S|)$$

Theorem

$$b_2^+(X) \ge -\frac{\operatorname{sign}(X)}{8} + |S| - \nu_S + \varepsilon(k_S, \ell, |S|)$$

Corollary $(S = \emptyset)$

If $b_2^+(X) \neq 2$, then

$$b_2^+(X) \ge -\frac{\operatorname{sign}(X)}{8} + \begin{cases} 3 & k \equiv 0, 3 \mod 4 \\ 1 & k \equiv 1 \mod 4 \\ 2 & k \equiv 2 \mod 4. \end{cases}$$
 (*)

Corollary $(S = \emptyset)$

If $b_2^+(X) \neq 2$, then

$$b_2^+(X) \ge -\frac{\operatorname{sign}(X)}{8} + \begin{cases} 3 & k \equiv 0, 3 \mod 4 \\ 1 & k \equiv 1 \mod 4 \\ 2 & k \equiv 2 \mod 4. \end{cases}$$
 (*)

Remark

- In the case $k \equiv 1 \mod 4$, the inequality (*) is Furuta's 10/8-inequality (2001).
- ② In the case $k \equiv 2,3 \mod 4$, the inequality (*) was first proved by N. Minami and B. Schimidt (2003) independently . They destabilize a Pin(2)-map and apply a result by S. Stolz on $\mathbb{Z}/4\mathbb{Z}$ -equivariant maps.
- **③** In the case $k \equiv 0 \mod 4$, J. Lin (2015) proved the inequality (*) using the KO_{Pin(2)}-theoretical Euler classes, degree and the Adams operations.

Example

Theorem^{bis}

$$\ell_S \geq 2k_S + \varepsilon(k_S, \ell, |S|).$$

Example

If X is decomposed as $X = X' \# (\#^m T^4)$, then we have

$$b_2^+(X) \ge -\frac{\operatorname{sign}(X)}{8} + 2m + \begin{cases} 3 & \frac{\operatorname{sign}(X)}{8} + m \equiv 0, 1 \mod 4 \\ 2 & \frac{\operatorname{sign}(X)}{8} + m \equiv 2 \mod 4. \\ 1 & \frac{\operatorname{sign}(X)}{8} + m \equiv 3 \mod 4 \end{cases}$$

This follows from Theorem by taking S as a basis of $H^1(\#^m T^4; \mathbb{Z})$. In this case, |S| = 4m and $\nu_S = m$.

- Introduction
- 2 sp-bundles and the Ksp-group
- Borsuk-Ulam type Inequality
- 4 10/8-type inequality
- **5** KO-degree
- 6 Proof

Contents

- 1 The Thom isomorphism theorem for the equivariant KO-theory
- KO-Euler class and KO-degree
- **3** Spin structures and a double covering Γ of Pin(2)
- The KO-degree of ϕ in KO $^*_{\Gamma}(\tilde{T}^n)[e_{KO}(\mathbb{H})^{-1}]$

Thom isomorphism theorem

Notation

- B: a compact Hausdorff G-space
- V: a vector bundle V over B

$$\mathsf{KO}_G^*(V) := \widetilde{\mathsf{KO}}_G(V \cup \{\infty\}).$$

Theorem (Atiyah)

Let V be a real spin G-vector bundle over a compact Hausdorff G-space B. Then there exists $t_{\mathrm{KO}}(V) \in \mathsf{KO}_G^{\dim_{\mathbb{R}} V}(V)$ such that the map

$$\mathsf{KO}^*_{\mathsf{G}}(B) o \mathsf{KO}^{\mathsf{dim}_{\mathbb{R}}}_{\mathsf{G}}(V), \ x \mapsto \pi^* x \cup \mathsf{t}_{\mathrm{KO}}(V),$$

is an isormophism, where $\pi:V\to B$ is the projection.

KO-Euler class and KO-degree

Definition

Let V, W be spin G-vector bundles over B and let $\phi: V \to W$ be a fibre-preserving proper G-map.

• The KO_G -Euler class $e_{KO}(V) \in KO_G^{\dim_{\mathbb{R}} V}(B)$ is defined by

$$e_{KO}(V) = s^*(t_{KO}(V))$$

where $s: B \to V$ is the zero section.

② The KO_G -degree $\deg_{KO}(\phi) \in KO_G^{\dim_{\mathbb{R}} W - \dim_{\mathbb{R}} V}(B)$ is defined by

$$\deg_{\mathrm{KO}}(\phi)\operatorname{t}_{\mathrm{KO}}(V) = \phi^*(\operatorname{t}_{\mathrm{KO}}(W)).$$

• To define the KO-degree of ϕ , it is necessary to put Pin(2)-spin structures on $V = V_0 \oplus V_1$ and $W = W_0 \oplus W_1$.

- To define the KO-degree of ϕ , it is necessary to put Pin(2)-spin structures on $V = V_0 \oplus V_1$ and $W = W_0 \oplus W_1$.
- The sp-structures on V_1 , W_1 induce the Pin(2)-spin structures.

- To define the KO-degree of ϕ , it is necessary to put Pin(2)-spin structures on $V = V_0 \oplus V_1$ and $W = W_0 \oplus W_1$.
- The sp-structures on V_1 , W_1 induce the Pin(2)-spin structures.
- Next we consider $V_0 \cong \underline{\tilde{\mathbb{R}}}^x$ and $W_0 \cong \underline{\tilde{\mathbb{R}}}^{x+\ell}$.
- When does \mathbb{R}^p admit a Pin(2)-spin structure?

- To define the KO-degree of ϕ , it is necessary to put Pin(2)-spin structures on $V = V_0 \oplus V_1$ and $W = W_0 \oplus W_1$.
- The sp-structures on V_1 , W_1 induce the Pin(2)-spin structures.
- Next we consider $V_0 \cong \underline{\tilde{\mathbb{R}}}^x$ and $W_0 \cong \underline{\tilde{\mathbb{R}}}^{x+\ell}$.
- When does $\tilde{\mathbb{R}}^p$ admit a Pin(2)-spin structure?

Lemma

• The Pin(2)-representation $\tilde{\mathbb{R}}^p$ admit a Pin(2)-spin structure if and only if p is a multiple of 4.

- To define the KO-degree of ϕ , it is necessary to put Pin(2)-spin structures on $V = V_0 \oplus V_1$ and $W = W_0 \oplus W_1$.
- The sp-structures on V_1 , W_1 induce the Pin(2)-spin structures.
- Next we consider $V_0 \cong \underline{\tilde{\mathbb{R}}}^x$ and $W_0 \cong \underline{\tilde{\mathbb{R}}}^{x+\ell}$.
- When does $\tilde{\mathbb{R}}^p$ admit a Pin(2)-spin structure?

Lemma

- The Pin(2)-representation $\tilde{\mathbb{R}}^p$ admit a Pin(2)-spin structure if and only if p is a multiple of 4.
- The Pin(2)-representation $\tilde{\mathbb{R}}^p$ admit a Pin(2)-invariant orientation if and only if p is even.

The double covering Γ of Pin(2)

Definition

We define the double covering Γ of Pin(2) as follows:

- Let C_4 be the cyclic group of order 4 with a generator j_4 .
- The C_4 -action $j_4 \cdot t = t^{-1}$, $t \in S^1$ defined by defines the semi direct product $S^1 \rtimes C_4$, which we denote by Γ .
- The double covering map $\Gamma = S^1 \rtimes C_4 \to \operatorname{Pin}(2) = S^1 \cup jS^1$ is defined by

$$z \in S^1 \mapsto z \in S^1, \quad j_4 \in C_4 \mapsto j.$$

The double covering Γ of Pin(2)

Definition

We define the double covering Γ of Pin(2) as follows:

- Let C₄ be the cyclic group of order 4 with a generator j₄.
- The C_4 -action $j_4 \cdot t = t^{-1}$, $t \in S^1$ defined by defines the semi direct product $S^1 \rtimes C_4$, which we denote by Γ .
- The double covering map $\Gamma = S^1 \rtimes C_4 \to \operatorname{Pin}(2) = S^1 \cup jS^1$ is defined by

$$z \in S^1 \mapsto z \in S^1, \quad j_4 \in C_4 \mapsto j.$$

Lemma

The Γ -representation $\tilde{\mathbb{R}}^p$ admit a Γ -spin structure if and only if p is even.

The KO-degree

Corollary

Suppose that ℓ is even.

- By stabilizing by $\tilde{\mathbb{R}}$ if necessary, $V_0\cong \underline{\tilde{\mathbb{R}}}^x$ and $W_0\cong \underline{\tilde{\mathbb{R}}}^{x+\ell}$ admit Γ -spin structures, and
- ullet the KO-degree of ϕ is defined.

The KO-degree

Corollary

Suppose that ℓ is even.

- By stabilizing by $\tilde{\mathbb{R}}$ if necessary, $V_0\cong \underline{\tilde{\mathbb{R}}}^x$ and $W_0\cong \underline{\tilde{\mathbb{R}}}^{x+\ell}$ admit Γ -spin structures, and
- the KO-degree of ϕ is defined.
- ullet We calculate the KO-degree $\deg_{\mathrm{KO}}(\phi)$ of ϕ in the algebra

$$\mathsf{KO}^*_{\Gamma}(\tilde{\mathcal{T}}^n)[\mathsf{e}_{\mathsf{KO}}(\mathbb{H})^{-1}].$$

The KO-degree

Corollary

Suppose that ℓ is even.

- By stabilizing by $\tilde{\mathbb{R}}$ if necessary, $V_0\cong \underline{\tilde{\mathbb{R}}}^x$ and $W_0\cong \underline{\tilde{\mathbb{R}}}^{x+\ell}$ admit Γ -spin structures, and
- the KO-degree of ϕ is defined.
- ullet We calculate the KO-degree $\deg_{\mathrm{KO}}(\phi)$ of ϕ in the algebra

$$\mathsf{KO}^*_{\Gamma}(\tilde{\mathcal{T}}^n)[\mathsf{e}_{\mathsf{KO}}(\mathbb{H})^{-1}].$$

Remark

Since $\phi|_{V_0}$ defines the map from V_0 to W_0 , we can "destabilizing" $\deg_{\mathrm{KO}}(\phi)$ with respect to $\mathrm{e}_{\mathrm{KO}}(\tilde{\mathbb{R}}^2)$. Thus we do not need to add the inverse of $\mathrm{e}_{\mathrm{KO}}(\tilde{\mathbb{R}}^2)$ to $\mathrm{KO}^*_{\Gamma}(\tilde{T}^n)[\mathrm{e}_{\mathrm{KO}}(\mathbb{H})^{-1}]$.

Theorem

Suppose that ℓ is even. Under the isomorphism

$$\mathsf{KO}^{\ell-4k}_\Gamma(\tilde{\mathcal{T}}^n)[\mathsf{e}_{\mathsf{KO}}(\mathbb{H})^{-1}] \cong \bigoplus_{\mathcal{S} \subset [n]} \mathsf{KO}^{\ell-4k}_\Gamma(\tilde{\mathbb{R}}^{\mathcal{S}})[\mathsf{e}_{\mathsf{KO}}(\mathbb{H})^{-1}],$$

the KO-degree of $\phi:V o W$ can be written as

$$[\mathsf{deg}_{\mathrm{KO}}(\phi)] = \sum_{\mathcal{S} \subset [n]} \mathsf{\Lambda}_{\mathcal{S}}[\beta_{\mathcal{S}}],$$

where $\beta_S \in \mathsf{KO}^{\ell-4k}_{\Gamma}(\tilde{\mathbb{R}}^S)$ and $\Lambda_S \in \mathbb{Z}$ are given by

$$\Lambda_S = \begin{cases} \pm N(S) 2^{\lceil d_S/2 \rceil + k - 2} & d_S \equiv 1, 2 \bmod 4 \\ \pm N(S) 2^{\lceil d_S/2 \rceil + k - 1} & d_S \equiv 3, 4 \bmod 4. \end{cases}$$

- Introduction
- 2 sp-bundles and the Ksp-group
- Borsuk-Ulam type Inequality
- 4 10/8-type inequality
- 6 KO-degree
- 6 Proof

Borsuk-Ulam type inequality follows from the following lemma.

Lemma

Suppose that I is a positive **even** integer. For each $S \subset [n]$, we have

$$\ell_S \geq 2k_S + \varepsilon_0(d_S)$$

where $d_S = I - 4k - |S|$ and $\varepsilon_0(d)$ is defined by the following table and $\varepsilon_0(d+8) = \varepsilon_0(d)$.

<i>d</i> mod 8	0	1	2	3	4	5	6	7
$\varepsilon_0(d)$	2	3	4	3	4	3	2	1

Lemma

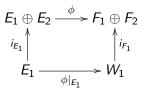
Lemma

Let E_1 , E_2 , F_1 , F_2 be G-spin vector bundles. For any fibre-preserving proper G-map

$$\phi: E_1 \oplus E_2 \to F_1 \oplus F_2$$

satisfying $\phi(E_1) \subset F_1$, we have

$$\mathsf{deg}_{\mathrm{KO}}(\phi)\,\mathsf{e}_{\mathsf{KO}}(E_2)=\mathsf{e}_{\mathsf{KO}}(F_2)\,\mathsf{deg}_{\mathrm{KO}}(\phi|_{E_1}).$$



Proof of Lemma

By the definition of the KO-degree, we have

$$\mathsf{deg}_{\mathrm{KO}}(\phi)\,\mathsf{t}_{\mathrm{KO}}(\mathit{E}_{1}\oplus\mathit{E}_{2})=\phi^{*}(\mathsf{t}_{\mathrm{KO}}(\mathit{F}_{1}\oplus\mathit{F}_{2})).$$

Then

$$\begin{split} i_{E_1}^*(\mathsf{L.H.S}) &= \mathsf{deg}_{\mathrm{KO}}(\phi) \, \mathsf{deg}_{\mathrm{KO}}(i_{E_1}) \, \mathsf{t}_{\mathrm{KO}}(E_1) \\ &= \mathsf{deg}_{\mathrm{KO}}(\phi) \, \mathsf{e}_{\mathsf{KO}}(E_2) \, \mathsf{t}_{\mathrm{KO}}(E_1). \end{split}$$

On the other hand,

$$\begin{split} i_{E_1}^*(\mathsf{R.H.S}) &= \phi^* i_{F_1}^* (\mathsf{t_{KO}}(F_1 \oplus F_2)) \\ &= \phi^* (\mathsf{deg_{KO}}(i_{F_1}) \, \mathsf{t_{KO}}(E_1)) \\ &= \mathsf{e_{KO}}(F_2) \, \mathsf{deg_{KO}}(\phi|_{E_1}) \, \mathsf{t_{KO}}(E_1) \end{split}$$

Comparing the coefficient of $t_{KO}(E_1)$, we obtain the required equation.

Sketch of the proof

- Step 1 Find Pin(2)-vector bundles representing $[V_1]$ and $[W_1]$ in terms of the Ksp-invariants $\{a_S\}_{S\subset [n]}$.
- Step 2 Substitute the result of Step 1 for the equation

$$\deg_{\mathrm{KO}}(\phi)\operatorname{e}_{\mathsf{KO}}(V_1) = \operatorname{e}_{\mathsf{KO}}(W_1)\operatorname{deg}_{\mathrm{KO}}(\phi|_{V_1}).$$

- Step 3 Calculate the KO-degree using the complexification map $KO_{\Gamma}^*[e_{KO}(\mathbb{H})^{-1}] \to K_{\Gamma}^*[e_{KO}(\mathbb{H})^{-1}].$
- Step 4 We obtain that for each S the coefficient Λ_S of β_S in the equation

$$[\deg_{\mathrm{KO}}(\phi)] = \sum_{S \subset [n]} \Lambda_S[\beta_S]$$

is an integer or an even integer. These conditions imply the required inequality.