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Introduction

This talk concerns Pin(2)-equivariant maps between Pin(2)-vector
bundles over tori.

V //

proj.   

W

proj.}}
T̃ n

I will explain the background and motivation of this talk.

Convention

▶ All manifolds are assumed to be connected, closed, and smooth.

▶ Pin(2) is defined as the subset S1 ∪ jS1 of the quaternions H.
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The Monopole Map

Let X be a spin 4-manifold with indefinite intersection form and
b+2 (X ) > 0. Fix a Riemannian metric on X .

We consider the monopole equation as the map

Φ : Ker(Ω1 d∗
→ Ω0)⊕ Γ(S+) → H1(X ;R)× (Ω+ ⊕ Γ(S−)),

Φ(a, s) = ((a)harmonic, d
+a+ q(s),Das)

where
▶ Ωp is the set of all differential p-forms on X ,
▶ Γ(S±) is the set of all sections of the half-spinor bundles S± of X ,
▶ q : Γ(S+) → Ω+ is the quadratic map,
▶ (a)harmonic is the harmonic part of a ∈ Ω1,
▶ D is the Dirac operator.
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Symmetry

The monopole map

Φ : Ker(Ω1 d∗
→ Ω0)⊕ Γ(S+) → H1(X ;R)× (Ω+ ⊕ Γ(S−))

The spin structure of X provides the Pin(2)-equivariance of Φ.
▶ Pin(2) acts on Ωp and H1(X ;R) via Pin(2) → Pin(2)/S1 = {±1}.
▶ Pin(2) acts on Γ(S±) = Γ(P ×Spin H±) via Pin(2) → Sp(1).
▶ Φ is Pin(2)-equivariant.

The gauge symmetry provides the H1(X ;Z)-equivariance of Φ.

▶ a ∈ H1(X ;Z) acts on ω ∈ Ω1, η ∈ Ω+ and s ∈ Γ(S±) by

a · ω = (a)harmonic + ω, a · η = η, a · s = exp(2π
√
−1ρ(a))s.

Here ρ : H1(X ;Z) → C∞(X ,R/Z) is defined as

ρ([ω])(x) =

∫ x

x0

ω mod Z, x ∈ X , ω ∈ Ω1.

▶ Φ is H1(X ;Z)-equivariant.
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Finite-dimensional approximation

By taking the quotient by H1(X ;Z) and a finite dimensional
approximation of the map

Φ : Ker(Ω1 d∗
→ Ω0)⊕ Γ(S+) → H1(X ;R)× (Ω+ ⊕ Γ(S−)),

we obtain
ϕ : V //

proj. ""

W

proj.~~
JX

,

where V and W are finite dimensional real Pin(2)-vector bundles over
the Jacobian torus JX = H1(X ;R)/H1(X ;Z).
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Properties of a finite-dimensional approximation ϕ

1 ϕ : V → W is a proper, fiber-preserving, Pin(2)-equivariant map.

2 The linear action of −1 ∈ Pin(2) on V induces the decomposition
V = V0 ⊕ V1. Here V0 = {v | (−1) · v = v} and
V1 = {v ∈ V | (−1) · v = −v}. Similarly we have W = W0 ⊕W1.

3 ϕ|V0 : V0 → W0 satisfies the commutative diagram

V0
ϕ // W0

JX × R̃x

∼=

OO

inclusion
// JX × R̃x+ℓ

∼=

OO

where R̃ is the 1-dimensional real representation of Pin(2) defined by
j · x = −x and z · x = x for z ∈ S1, x ∈ R̃.

4 V1 and W1 are the realification of “sp-bundles” Vsp and Wsp. such
that some class of the “Ksp-invariants” of the difference between Wsp

and Vsp vanish.
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Main results
1 A Borsuk-Ulam type inequality for the existence of Pin(2)-equivariant

maps

2 A 10/8-type inequality for b1(X ) ≥ 0

3 Determination of the KOΓ-degree of ϕ for b+2 (X ) even
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sp-bundle

Let B be a C2-space (C2 denotes the cyclic group of order two).

jB : B → B: the involution on B.

Definition (Dupont)

A sp-bundle is a complex vector bundle V over B with an antilinear map
J : V → V satisfying the following conditions.

1 J is a lift of jB . That is πV ◦ J = jB ◦ πV .
2 J ◦ J = −idV .
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Ksp-group

Definition

For any compact Hausdorff C2-space B, the Ksp-group Ksp(B) of B is
defined by

Ksp(B) = F (B)/Q(B),

F (B) is the free abelian group generated by the isom. classes of
sp-bundles over B.

Q(B) is the subgroup of F (B) generated by
[V ] + [W ]− [V ⊕W ], V ,W : sp-bundles

Definition

For any locally compact C2-space U, Ksp(U) is defined by

Ksp(U) = Ker(Ksp(U+) → Ksp({∞})),

where U+ = U ∪ {∞} is the one-point compactification of U.
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Computations

Example

1 The Ksp-group of R̃p (with jB(v) = −v) is given by

Ksp(R̃p) ∼=


Z p ≡ 0, 4 mod 8

Z/2Z p ≡ 2, 3 mod 8

0 otherwise.

2 Let T̃ n be the n-dimensional torus R̃n/Zn. The Ksp-group of T̃ n can
be computed by

Ksp(T̃ n) ∼=
⊕
S⊂[n]

Ksp(R̃S),

where the symbol [n] stands for the set {1, 2, . . . , n} and R̃S denotes
the set of all maps from S to R̃.
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The realification of a sp-bundle

Remark

For any C2-space B, we regard B as a Pin(2)-space via the map
Pin(2) → Pin(2)/S1 = C2.

Definition

The realification of a sp-bundle (V , J) is the underlying real vector bundle
rV with the Pin(2)-action defined by

z · v := zv , j · v := J(v)

for v ∈ rV , z ∈ S1.

sp-bundles ⇝ real Pin(2)-vector bundles
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Setting

Let V and W be Pin(2)-vector bundles over T̃ n, n ≥ 0.

Given a proper, fiber-preserving, Pin(2)-map ϕ : V → W .

The linear action by −1 ∈ Pin(2) on V ,W defines the
decompositions V = V0 ⊕ V1 and W = W0 ⊕W1, respectively.

V = V0 ⊕ V1
ϕ //

proj.
&&

W = W0 ⊕W1

proj.
xx

T̃ n

.

Assumptions

V0,W0 are given by V0 = T̃ n × R̃x , W0 = T̃ n × R̃x+ℓ with ℓ > 0.

ϕ|V0 : V0 → W0 is given by the inclusion map R̃x ↪→ R̃x+ℓ.

V1,W1 are given by the realifications of sp-bundles Vsp,Wsp over T̃ n,
respectively.
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Ksp-invariant

The sp-bundles Vsp,Wsp define an element a := [Wsp]− [Vsp] ∈ Ksp(T̃ n).
Using the isomorphism Ksp(T̃ n) ∼=

⊕
S⊂[n] Ksp(R̃S), it can be

decomposed as

a =
∑
S⊂[n]

aS

where

aS ∈ Ksp(R̃S) ∼=


Z |S | ≡8 0, 4

Z/2Z |S | ≡8 2, 3

0 otherwise.

Assumption

If |S | > 4, then aS = 0.
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Invariant νS

1 Let S be a subset of [n] = {1, 2, . . . , n}.
2 The integer Nm(S),m ≥ 0 is defined to be the number of families

{S1, . . . , Sm} of S such that

Si ̸= Sj (i ̸= j), S = S1 ∪ · · · ∪ Sm, |Si | ∈ {2, 3, 4},
aSi ̸= 0 ∈ Ksp(R̃Si )⊗ Z/2Z ∼= Z/2Z.

3 The integer N(S) is defined by

N(S) =
∞∑

m=0

(−2)mNm(S).

4 The integer νS is defined by

νS := max{ν | 2ν divides N(S)}
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3 The integer N(S) is defined by

N(S) =
∞∑

m=0

(−2)mNm(S).

4 The integer νS is defined by

νS := max{ν | 2ν divides N(S)}
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Main result

Theorem

If there exists a Pin(2)-map ϕ : V = V0 ⊕ V1 → W = W0 ⊕W1 satisfying
the assumptions, then we have the inequality

ℓS ≥ 2kS + ε(kS , ℓ, |S |)
(⇔ ℓ ≥ 2k + |S | − 2νS + ε(k − νS , ℓ, |S |)).

Here ℓS = ℓ− |S |, kS = k − νS , and ε(kS , ℓ, |S |) is defied by the following
table.

|S |: even |S |: odd

p 0 1 2 3 0 1 2 3

ε(p, ℓ, |S |) 3 (l ̸= 2)
1 2 3 2 1 2 2

1 (l = 2)

Ko Ohashi (Univ. of Tokyo) Pin(2)-equivariant maps and KO-degree September 12, 2018 22 / 44



1 Introduction

2 sp-bundles and the Ksp-group

3 Borsuk-Ulam type Inequality

4 10/8-type inequality

5 KO-degree

6 Proof

Ko Ohashi (Univ. of Tokyo) Pin(2)-equivariant maps and KO-degree September 12, 2018 23 / 44



Contents
1 Setting

2 Calculation of aS(X )

3 10/8-type inequality

4 Example X = X ′#(#mT 4)

Ko Ohashi (Univ. of Tokyo) Pin(2)-equivariant maps and KO-degree September 12, 2018 24 / 44



Setting

Let X be a spin 4-manifold with indefinite intersection form and
b+2 (X ) > 0.

Let ϕ : V → W be a finite-dimensional approximation of the
monopole map Φ.

ℓ := b+2 (X ), k := − sign(X )/16.

Let a(X ) =
∑

S⊂[n] aS(X ) be the Ksp-invariant.
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Definition of ΣL

Let L be a sublattice of H1(X ;Z) with rank r .

We define the submanifold ΣL of X as follows:

TL := Hom(H1(X ;Z)/L,R/Z) is a subtorus of Hom(H1(X ;Z),R/Z)
of codimension r .

Then ΣL := ρ−1(TL) is a submanifold of X of codimension r . Here
ρ : X → Hom(H1(X ;Z),R/Z) is the Albanese map. The spin
structure of X induces a spin structure of ΣL.

TL
� � // Hom(H1(X ;Z),R/Z)

ΣL

ρ

OO

� � // X

ρ

OO
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Calculation of aS(X )

Fix a Z-basis {x1, . . . , xn} of H1(X ;Z).
For any subset S ⊂ [n], we define L(S) as the sublattice generated by
the set {xs |s ∈ S} and set ΣS := ΣL(S).

Theorem

Under the isomorphism Ksp(R̃S) ∼= KO|S|−4(pt.), we have

aS(X ) = α([ΣS ]),

where α denotes the α-invariant α : Ωspin
∗ → KO−∗(pt.).
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Corollary

By Theorem aS(X ) = α([ΣS ]), we obtain the following corollary.

Corollary

If |S | > 4, then aS(X ) = 0.

If |S | = 0 or 4, then it can be written (up to sign) as

aS(X ) =

{
sign(X )/16 |S | = 0∫
X xS |S | = 4, xS = ∪s∈Sxs
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Theorem

b+2 (X ) ≥ −sign(X )

8
+ |S | − νS + ε(kS , ℓ, |S |)

Corollary (S = ∅)
If b+2 (X ) ̸= 2, then

b+2 (X ) ≥ −sign(X )

8
+


3 k ≡ 0, 3 mod 4

1 k ≡ 1 mod 4

2 k ≡ 2 mod 4.

(∗)
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Corollary (S = ∅)
If b+2 (X ) ̸= 2, then

b+2 (X ) ≥ −sign(X )

8
+


3 k ≡ 0, 3 mod 4

1 k ≡ 1 mod 4

2 k ≡ 2 mod 4.

(∗)

Remark
1 In the case k ≡ 1 mod 4, the inequality (∗) is Furuta’s 10/8-inequality

(2001).

2 In the case k ≡ 2, 3 mod 4, the inequality (∗) was first proved by N.
Minami and B. Schimidt (2003) independently . They destabilize a
Pin(2)-map and apply a result by S. Stolz on Z/4Z-equivariant maps.

3 In the case k ≡ 0 mod 4, J. Lin (2015) proved the inequality (∗) using
the KOPin(2)-theoretical Euler classes, degree and the Adams
operations.

Ko Ohashi (Univ. of Tokyo) Pin(2)-equivariant maps and KO-degree September 12, 2018 30 / 44



Example

Theorembis

ℓS ≥ 2kS + ε(kS , ℓ, |S |).

Example

If X is decomposed as X = X ′#(#mT 4), then we have

b+2 (X ) ≥ −sign(X )

8
+ 2m +


3 sign(X )

8 +m ≡ 0, 1 mod 4

2 sign(X )
8 +m ≡ 2 mod 4.

1 sign(X )
8 +m ≡ 3 mod 4

This follows from Theorem by taking S as a basis of H1(#mT 4;Z). In
this case, |S | = 4m and νS = m.
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Thom isomorphism theorem

Notation

B: a compact Hausdorff G -space

V : a vector bundle V over B

KO∗
G (V ) := K̃OG (V ∪ {∞}).

Theorem (Atiyah)

Let V be a real spin G-vector bundle over a compact Hausdorff G-space
B. Then there exists tKO(V ) ∈ KOdimR V

G (V ) such that the map

KO∗
G (B) → KOdimR V

G (V ), x 7→ π∗x ∪ tKO(V ),

is an isormophism, where π : V → B is the projection.
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KO-Euler class and KO-degree

Definition

Let V ,W be spin G-vector bundles over B and let ϕ : V → W be a
fibre-preserving proper G-map.

1 The KOG -Euler class eKO(V ) ∈ KOdimR V
G (B) is defined by

eKO(V ) = s∗(tKO(V ))

where s : B → V is the zero section.

2 The KOG -degree degKO(ϕ) ∈ KOdimR W−dimR V
G (B) is defined by

degKO(ϕ) tKO(V ) = ϕ∗(tKO(W )).
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Spin structure on R̃p

To define the KO-degree of ϕ, it is necessary to put Pin(2)-spin
structures on V = V0 ⊕ V1 and W = W0 ⊕W1.

The sp-structures on V1,W1 induce the Pin(2)-spin structures.

Next we consider V0
∼= R̃x

and W0
∼= R̃x+ℓ

.

When does R̃p admit a Pin(2)-spin structure?

Lemma

The Pin(2)-representation R̃p admit a Pin(2)-spin structure if and
only if p is a multiple of 4.

The Pin(2)-representation R̃p admit a Pin(2)-invariant orientation if
and only if p is even.
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The double covering Γ of Pin(2)

Definition

We define the double covering Γ of Pin(2) as follows:

Let C4 be the cyclic group of order 4 with a generator j4.

The C4-action j4 · t = t−1, t ∈ S1 defined by defines the semi direct
product S1 ⋊ C4, which we denote by Γ.

The double covering map Γ = S1 ⋊ C4 → Pin(2) = S1 ∪ jS1 is
defined by

z ∈ S1 7→ z ∈ S1, j4 ∈ C4 7→ j .

Lemma

The Γ-representation R̃p admit a Γ-spin structure if and only if p is even.
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The KO-degree

Corollary

Suppose that ℓ is even.

By stabilizing by R̃ if necessary, V0
∼= R̃x

and W0
∼= R̃x+ℓ

admit
Γ-spin structures, and

the KO-degree of ϕ is defined.

We calculate the KO-degree degKO(ϕ) of ϕ in the algebra

KO∗
Γ(T̃

n)[eKO(H)−1].

Remark

Since ϕ|V0 defines the map from V0 to W0, we can “destabilizing”
degKO(ϕ) with respect to eKO(R̃2). Thus we do not need to add the
inverse of eKO(R̃2) to KO∗

Γ(T̃
n)[eKO(H)−1].
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Theorem

Suppose that ℓ is even. Under the isomorphism

KOℓ−4k
Γ (T̃ n)[eKO(H)−1] ∼=

⊕
S⊂[n]

KOℓ−4k
Γ (R̃S)[eKO(H)−1],

the KO-degree of ϕ : V → W can be written as

[degKO(ϕ)] =
∑
S⊂[n]

ΛS [βS ],

where βS ∈ KOℓ−4k
Γ (R̃S) and ΛS ∈ Z are given by

ΛS =

{
±N(S)2⌈dS/2⌉+k−2 dS ≡ 1, 2 mod 4

±N(S)2⌈dS/2⌉+k−1 dS ≡ 3, 4 mod 4.
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Borsuk-Ulam type inequality follows from the following lemma.

Lemma

Suppose that l is a positive even integer. For each S ⊂ [n], we have

ℓS ≥ 2kS + ε0(dS)

where dS = l − 4k − |S | and ε0(d) is defined by the following table and
ε0(d + 8) = ε0(d).

d mod 8 0 1 2 3 4 5 6 7

ε0(d) 2 3 4 3 4 3 2 1
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Lemma

Lemma

Let E1,E2,F1,F2 be G-spin vector bundles. For any fibre-preserving proper
G-map

ϕ : E1 ⊕ E2 → F1 ⊕ F2

satisfying ϕ(E1) ⊂ F1, we have

degKO(ϕ) eKO(E2) = eKO(F2) degKO(ϕ|E1).

E1 ⊕ E2
ϕ // F1 ⊕ F2

E1
ϕ|E1

//

iE1

OO

W1

iF1

OO
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Proof of Lemma

By the definition of the KO-degree, we have

degKO(ϕ) tKO(E1 ⊕ E2) = ϕ∗(tKO(F1 ⊕ F2)).

Then

i∗E1
(L.H.S) = degKO(ϕ) degKO(iE1) tKO(E1)

= degKO(ϕ) eKO(E2) tKO(E1).

On the other hand,

i∗E1
(R.H.S) = ϕ∗i∗F1

(tKO(F1 ⊕ F2))

= ϕ∗(degKO(iF1) tKO(E1))

= eKO(F2) degKO(ϕ|E1) tKO(E1)

Comparing the coefficient of tKO(E1), we obtain the required equation.
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Sketch of the proof

Step 1 Find Pin(2)-vector bundles representing [V1] and [W1] in
terms of the Ksp-invariants {aS}S⊂[n].

Step 2 Substitute the result of Step 1 for the equation

degKO(ϕ) eKO(V1) = eKO(W1) degKO(ϕ|V1).

Step 3 Calculate the KO-degree using the complexification map
KO∗

Γ[eKO(H)−1] → K∗
Γ[eKO(H)−1].

Step 4 We obtain that for each S the coefficient ΛS of βS in the
equation

[degKO(ϕ)] =
∑
S⊂[n]

ΛS [βS ]

is an integer or an even integer. These conditions imply the
required inequality.
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